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9 ABSTRACT
10 Weather causes both positive and negative impacts to agriculture making it the most

11 uncontrollable factor affecting crop production. Agriculture in the southern U.S. comprises over
12 40% of the annual commodity export from the U.S., and this region also experiences a relatively
13 large frequency of tropical cyclones. Few previous studies have investigated the effects tropical
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15  quality and yield in the Coastal Southern U.S. region using United States Department of

16  Agriculture National Agricultural Statistics Service crop condition data (May—October; 1986—
17 2021). The greatest changes in condition ratings were observed in fields that were favorable for
18  normal and above normal yield potential, which were downgraded to a less than normal

19  condition more favorable for some extent of loss to yield. For crops considered in excellent or
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or very poor conditions (up to 3% on average). When aggregating all crops in this study (corn,
cotton, peanuts, rice, sorghum, soybean), the latter portion of the growing season was the most
detrimental to conditions after tropical cyclone impact, even under drought conditions. The
strongest correlation found was between crop condition declines and tropical cyclone intensity,
as major hurricanes were more likely to cause crop loss than any other variable. Consequently,
yield prospects decline after a tropical cyclone based on declines in coverage of excellent and
good conditions (yield declines up to 6% on average); though, crop conditions tend to recover
resulting in yield to also recover marginally by the end of the season (declines up to 3%).
Overall, these results provide essential risk management information for producers and could be

used to better inform resilience and sustainability decisions related to tropical cyclone impacts.
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1. INTRODUCTION

Agriculture is one of the most sensitive economic sectors to weather and climate due to
its direct and uncontrollable impact on crop production (Andresen et al., 2001; Knox et al.,
2014). In particular, the South U.S. region has an especially important agricultural sector
producing many high valued crops such as citrus, vegetables, and several field crops including
soybean, hay, corn, wheat, cotton, peanuts, sorghum, and more (Hatch et al., 1999). Agriculture
in the South is a significant source of commerce, with over $55 billion USD in commodity
production annually accounting for nearly 17% of total U.S. production (Asseng, 2013). In order
to maximize commodity production, continuous monitoring of crops throughout the growing
season provides valuable insight into crop quality, health, and productivity that stakeholders use
to make real-time decisions (Khaki et al., 2021).

Unique to the Coastal South when compared to other agricultural belts in the U.S.—and
something to be considered by stakeholders—is increased exposure to tropical cyclones (TCs).
TCs are among the most destructive natural hazards on the planet (Kunze, 2021) and can cause
irreparable damage to agriculture in the form of destruction to vegetation, damage to irrigation
facilities, and long-term loss of soil fertility (Xu et al., 2005). Perils associated with a single TC
event, such as the flooding, can destroy an entire season’s yield (Knox et al., 2014). Recently, the
USDA starting issuing hurricane-specific crop insurance and has expanded to cover all tropical
cyclones to provide as a financial safety net against crop losses (USDA, 2020). In terms of
damage, Tropical Storm Fay in August 2008 resulted in over $250M USD in losses to agriculture
in northern Florida and southern Georgia, in part because 70% of the expected production value
was lost for vegetable crops (Flanders et al., 2008). On the extreme end, Hurricane Katrina in

August 2005 caused sugar cane, corn, soybean, and cotton production losses totaling
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approximately $1B USD (Schnepf and Chite, 2005). Other literature has investigated the
detrimental effects TCs have had on agricultural sectors across the globe, including China (Xu et
al., 2005), Bangladesh (Hossain et al., 2008), Central America (Boucher et al., 2001), and the
Caribbean Islands (Bertinelli et al., 2016), as well as TC impact based on land use and
topographic features (Philpott et al., 2008) and the effects on agriculture from an economic
standpoint under a changing climate (Chen and McCarl, 2009). In terms of a changing climate,
increasing TC frequency and intensity has been debated considerably within the context of
global climate change and natural variability (Emanuel, 2005; Webster et al., 2005; Landsea et
al., 2006; Shepherd and Knutson, 2007, Kossin et al., 2010; Knutson et al., 2010; Seneviratne et
al., 2012; Villarini et al., 2012; Weinkle et al., 2012; Knutson et al., 2013), which emphasizes the
importance of investigating tropical cyclone impacts in the Coastal Southern U.S. Despite this
debate, TC impacts from heavy rain and damaging winds are costly and have a varying response
depending on the agroecosystem and its vulnerability (Perotto-Baldiviezo et al., 2004; Philpott et
al., 2008). Therefore, if tropical cyclone frequency and/or intensity continues to increase in the
future (Emanuel, 2007; Bender et al. 2010; Bell et al., 2011; Tron and Snyder, 2012; Landsea
and Franklin, 2013), the implications to agriculture in the Coastal Southern U.S. will amplify.
Heavy rain from TCs can lead to inundated fields resulting in disease and root rotting as
daily rainfall amounts from TCs average between 150-350mm across all aggregated cyclone
strength classifications (Cerveny and Newman, 2000). Heavy rainfall effects to agricultural
fields also holds true for non-TC excess precipitation events (Knox et al., 2014; Bundy et al.,
2022). In general, flooding associated with landfalling TCs has claimed a large economic and
societal toll with several billion dollars in damage annually to the U.S. (e.g., Rappaport, 2000;

Pielke et al., 2008; Changnon, 2008; Mendelsohn et al., 2012; Peduzzi et al., 2012). Despite
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these repercussions, there is limited published literature about the inland flooding from TCs
when compared to improving the understanding of damage caused by storm surge and wind
(e.g., Elsberry, 2002; U.S. Department of Commerce, 2011; Zandbergen, 2009; Villarini et al.,
2014). This is especially true when it comes to TC-induced rainfall impacts on crop quality.
Flooded land also impacts soil structure (Kopyra and Gwo d, 2004; Pengthamkeerati et al., 2006;
Haddad et al., 2013; Kraur et al., 2019) and if there is little soil integrity or strength, then crops
are more susceptible to being damaged by wind (Cleugh et al., 1998). In general, excessive
winds from TCs pose a threat for greensnap or root lodging, resulting in downed fields, a
reduction in crop quality, and ultimately a loss in production (Cleugh et al., 1998; Lindsey et al.,
2021). Even with these TC perils, previous literature (e.g., Rodgers et al., 2001; Knight and
Davis, 2007) has noted that the contribution of TC-induced rainfall has been overlooked, as
rainfall from TCs can be essential for the success of the agricultural enterprise in the Coastal
South U.S. region. TC-induced rainfall comprises between 5—-15% of the growing season rainfall
total for much of the region (Knight and Davis, 2007). In addition, if all TC-induced rainfall was
removed in a given season, soil moisture deficits in the Southern U.S. would increase by
approximately 20-30%, on average (Knight and Davis, 2007). The timing of TC rainfall is likely
an important contributor to whether it would benefit a crop, and there is a risk versus reward
factor when it comes to beneficial TC rainfall versus potential wind damage. Neither of these are
well understood and would benefit from a quantitative analysis.

A widely used methodology to perform continuous monitoring of crops is through the
United States Department of Agriculture (USDA) National Agricultural Statistics Service
(NASS) Crop Progress report. The report is crucial for speculators in agriculture future markets

(Bain and Fortenbery, 2013; Lehecka, 2014). Crop Progress reports released by the USDA



102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

NASS have been argued to capture the complexities of assessing the ‘““status” of a crop better
than any model or remote sensing retrieval (Begueria and Maneta, 2020) and have had
statistically significant correlations with weather/climate variables and yield (Bundy and
Gensini, 2022). Therefore, with existing discrepancies in previous literature regarding whether
TCs are overall beneficial, detrimental, or perhaps both to agriculture, this study aimed to
quantify historical TC impacts on crop quality and yield in the Coastal South U.S. region. In
particular, the goals of this study were to 1) quantify the impacts TCs have had on conditions
across multiple field crops, 2) quantify the intermonthly impacts TCs may have had on crop
conditions, 3) characterize how TC intensity and precursor soil moisture impacted crop
conditions, and 4) quantify historical yield changes based on the crop conditions. A
comprehensive overview of crop quality and yield impacts by TCs using USDA NASS data has
not been performed to date. The novel results herein can be used by farmers, insurers,
agronomists, and other stakeholders to aid in the decision-making process regarding management

and resilience when it comes to TC impacts on regional agriculture.

2. MATERIAL AND METHODS
2.1. Crop condition data

Weekly USDA NASS Crop Progress crop condition data were obtained from May—
October, 19862021, for eight states we define as the Coastal South U.S.: Texas, Louisiana,
Mississippi, Alabama, Georgia, Florida, South Carolina, and North Carolina (USDA, 2022).
General crop condition data includes corn, cotton, peanuts, rice, sorghum, and soybean as they

are the most widespread in terms of yield (Fig. 1), production (Appendix A), and acreage
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(Appendix B) within this region. Condition data varied temporally by crop and by state—not all

states had the same number of years of data for each crop examined.

15-8 HM10-12
BNg-10 MN12-14

2-29 EMl35-42 45-51 [ 57-64 EM7.0-7.7
9-35 Hl4.2-49 51-57 BN64-7.0 IM7.7-83

1.1-19 [2.7-3.5 El43-5.0
1.9-2.7 BN3.5-43 IM50-58

Fig. 1. Average annual yield (kg ha! in thousands) at county-level for each crop examined in the
Coastal Southern U.S. region (1986-2021). Locations within the study area without a county

outline did not have any production for the respective crop. (Color not needed for print)

For example, corn condition data for Texas are available from 1986—present, though for

Louisiana, Alabama, and Georgia, corn condition data only date back to 2007. Cotton, soybean,
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sorghum, and rice data were available for all states from 1986—present, whereas peanut data were
only available dating back to 1996. It is important to emphasize that a consistent sample size by
state and/or crop was not necessarily important for this study, as attaining the greatest number of
TC impact cases possible for examination was prioritized.

Weekly data collected by the USDA within each county are summarized and weighted by
acreage to inform state-level data. Thus, public data via the USDA NASS are available only at
state-level aggregation. Crop condition data are not released at the county level in part to protect
the confidentiality of growers whose operations may comprise much of the production in a given
county (USDA, 2021). These data are gathered via a weekly survey by reporters consisting of
largely extension agents and Farm Service Agency staff (USDA, 2016). Approximately 3,600
respondents are asked to report for the entire week ending on Sunday, regardless if they submit
their report on Friday, Saturday, or Sunday (USDA, 2021). For reports submitted prior to the
Sunday reference date, a degree of uncertainty is introduced by projections for weekend changes
in progress and condition. By the end of the 2020 season, over 95% of the data were being
submitted through an online portal. As a result, most reports were submitted on Monday
morning, significantly reducing projection uncertainty (USDA, 2021). For the general crop
conditions portion of the report, reporters are asked to estimate the percent of their crop in
excellent, good, fair, poor, and very poor condition. General crop condition categories defined by

the USDA are as follows:

* Excellent - Yield prospects are above normal. Crops are experiencing little or no stress.
Disease, insect damage, and weed pressures are insignificant.
* Good - Yield prospects are normal. Moisture levels are adequate and disease, insect

damage, and weed pressures are minor.
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* Fair - Less than normal crop condition. Yield loss is a possibility, but the extent is
unknown.

* Poor - Heavy degree of loss to yield potential which can be caused by excess soil
moisture, drought, disease, etc.

* Very Poor - Extreme degree of loss to yield potential, complete or near crop failure.

The Crop Condition Index (CCI) was calculated for each report through the following equation
(Bain and Fortenbery, 2013, 2017):

CCI = %Excellent (1.0) + %Good (0.75) + %Fair (0.50) +%Poor (0.25) + %Very Poor (0)
This weighted index provides a value summarizing the current state of weekly conditions from
the five crop conditions. The index ranges from [0, 100], with an index value of 100
corresponding to 100% of the surveyed crop being reported in excellent condition (Bain and
Fortenbery, 2013, 2016). The 0 weight on the very poor condition percentage is used to eliminate
the effect abandoned acres has if used for a yield forecast (Fackler and Norwood, 1999;
Jorgensen and Diersen, 2014). We note there are other ways one might use the crop condition
information provided by the USDA. For example, the USDA use their own weighted index,
ranging from [1, 5] that combines all conditions together (similar to the Bain and Fortenbery
(2013) approach) where an index of 1 corresponds to 100% of the crop being in very poor
condition while an index of 5 corresponds to 100% of the crop being in excellent condition
(Rosales, 2021). Other approaches include adding the percent of crop rated excellent and percent
rated good and use that index to model corn and soybean yields (Irwin and Good, 2017a, 2017b;
Irwin and Hubbs, 2018). However, Bain and Fortenbery (2016) argue that only using the good
and excellent rating information is a disadvantage since responses from changes in the bottom

three categories (fair, poor, very poor) are not considered. Also, the Bain and Fortenbery (2016)
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CCI has been proven to represent the overall crop condition and use as an explanatory variable in
modeling crop yields and production (Fackler and Norwood, 1999; Jorgensen, 2014; Jorgensen
and Diersen, 2014; Bundy and Gensini, 2022).
2.2. Crop yield data

Crop yield data were also obtained from the USDA NASS from 19862021 for each
Coastal South state for each crop examined (USDA, 2022). A linear trend adjustment was
computed for each state for each growing season to eliminate the long-term trends of yield
within each state. The linear trend was calculated dating back to when the crop condition data
were first available for each state and crop in order to keep the comparison between conditions
and yield consistent. The trend was computed by calculating the least-squares regression slope
between the yield and the year index. Least-squares regression was used across all crops and
states since each trend was approximately linear. This slope value was used to then detrend the
yield data for each state and crop. The equation (Equ 1) used to detrend the yield for each crop
and state is as follows (Irwin and Good, 2017a; Bundy and Gensini, 2022):

Yieldadj = Yield: + [B1 (xi — xn)] 1
where Yield,is the observed yield for year t. B is the rate of change in the data, x; is the total
number of years used, and xn is the year index. Yield for crops was collected from the USDA
NASS database as follows: cotton in Ib - ac’!, corn in bu - ac™!, peanuts in Ib - ac’!, rice in Ib - ac’!,
sorghum in bu - ac”!, and soybean in bu - ac™!. These units were converted to kg - ha! to keep
yield units consistent across the analysis. While the use of the USDA NASS database has proven
reliable in a peer-reviewed research setting (e.g., Bundy and Gensini, 2022), there are
shortcomings of the database worth noting. First, between the use of the crop conditions and

yield, the statistics may be impacted by the growth stage of the crop. Hence, more crop
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deterioration/yield loss may occur to crops that are further along in their growing cycles in more
southern location than further north within a state. With this, the data at state-level aggregation is
a limitation. Second, these statistics do not account for the practice of double-cropping which
may impact the timing of the planting date, growth cycle, and in turn, the variability in crop
conditions and yield. Finally, the comparison between crop conditions and yield in the USDA
NASS database cannot account for irrigation. In other words, these data are not separated by
rainfed and irrigated crops which may also impact variability in the results.
2.3. Tropical cyclone data

TC data were compiled from the National Oceanic and Atmospheric Administration
(NOAA) Historical Hurricane Tracks database from May—October, 1986-2021 (NOAA, 2021).
Tropical depressions (TD), tropical storms (TS), and Category 1 (H1), 2 (H2), 3 (H3), and 4 (H4)
hurricanes were obtained for this analysis. No Category 5 hurricanes impacted crop area during
the 19862021 study period. It is important to note that there were Category 5 hurricanes that
made landfall during the study period, and there were some cases where hurricanes were
upgraded to a Category 5 hurricane after the storm. These two examples include Hurricane
Andrew and Michael as they were not initially considered Category 5 hurricanes at landfall
(Landsea et al, 2004; NOAA, 2019). Nonetheless, these two storms were not Category 5
hurricanes once they went over cropland. The specific number of cases for each state, crop, and
type of TC impacting each state were sorted (Table 1). TCs were classified based on their
maximum intensity when affecting the respective crop area in any state in the study domain. The
cyclone center of circulation (Fig. 2) needed to cross over at least one county with crop

production (Fig. 1) to be counted as “impacting crop area” for this analysis.



225  Table 1. Report totals for each Coastal Southern U.S. state divided by crop type and tropical

226  cyclone intensity (1986-2021).

Totals by Crop Type Totals by Tropical Cyclone Intensity
State Corn  Cotton Peanuts Rice Sorghum Soybean Total TD TS H1 H2 H3 H4 Total
Texas 25 25 3 16 24 4 97 4 14 6 2 2 1 29
Louisiana 1 9 15 9 16 50 6 5 1 1 17
Mississippi 3 15 3 3 3 15 42 10 1 16
Alabama 5 35 24 17 81 20 7 4 1 2 1 35
Florida 6 28 34 10 24 3 1 3 1 42
Georgia 11 30 21 16 78 15 16 1 32
South Carolina 5 20 11 12 48 11 9 3 1 24
North Carolina 30 23 22 29 104 9 13 4 3 2 31
Total 80 163 112 34 36 109 534 85 92 27 7 10 5 226
227
 J<2 [P5-8 IM11-13
228

229  Fig. 2. Kernel density of all tropical cyclone center tracks used in this study (1986-2021).

230  Cropland represented by outlined counties with darker outlines representing higher production.
231 (Color not needed for print)

232

233 2.4. Soil moisture data

234 Palmer Modified Drought Index (PMDI) data were used as a measurement of soil

235  moisture (NWS, 2011). The PMDI attempts to measure the duration and intensity of long-term
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drought-inducing circulation patterns and is the operational version of the Palmer Drought
Severity Index (PDSI). Long-term drought is cumulative, so the intensity of drought during the
current month is dependent on the current weather patterns plus the cumulative patterns of
previous weeks, but the PMDI can respond fairly rapidly even if it cannot totally capture the
instance of flash droughts (Palmer, 1965; NCEI, 2021). Therefore, PMDI values were collected
for each report for the week prior to a TC impacting the cropping area (week 0). PMDI values
greater than or equal to 2.0 represented “wet” conditions in this research, values less than or
equal to -2.0 represented “dry” conditions, and values between -1.99 and 1.99 represented near
normal conditions (Palmer, 1965). These data are available at the climate division level (NOAA,
2022), thus, PMDI data were gathered only for the divisions that were impacted by the
circulation center of the TC represented in Fig. 2 and if there was crop production in that
division at the time of the TC. These data were then averaged for each state to inform the
precursor PMDI value/classification for each TC case. In addition, the soil moisture analysis was
separated into different portions of the growing season: May and June represented the early
portion of the growing season, July and August represented the middle portion, and September
and October represented the late portion.
2.5. Analysis

Crop condition data were gathered for the week before TC impact (week 0), the week of
the TC impact (week 1), and the week after the TC impact (week 2). Week 1 and week 2
represent the impacts TCs may have on crops. These two weeks were collected as extension
agents conducting the crop condition survey may see more of the possible slower developing
impacts from the TC in week 2, or perhaps, more recovery. Also, it is possible that week 2 may

be the only time to adequately assess the crop in severe cases where more direct results of the TC
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may have needed to be dealt with first during week 1 or immediately after the TC. All in all,
assessing the week of the TC impact and week after will likely represent most of the effects TCs
bring upon crops while limiting the potential weather effects after the TC. The percent change
for each condition category (excellent, good, fair, poor, very poor) was calculated between week
1 and week 2 from week 0. The weekly change value amongst the crop condition categories
represents one report. A single TC can have multiple reports depending on the intensity changes,
and how many states/crops it impacts. For example, Dennis in July 2005 has six different reports

as outlined below:

* Category 3 Hurricane Dennis affected 1) Florida peanuts.
* Downgraded to a tropical storm and affected 2) Alabama cotton and 3) Alabama peanuts.
* Further downgraded to a tropical depression and affected 4) Mississippi cotton, 5)

Mississippi rice, and 6) Mississippi soybean.

In total, there were 534 reports each for week 1 and week 2, making the entire dataset consist of
1068 reports. To examine changes, or differences between crop condition movements, a
combination of three assessments were made. This includes 1) computing how many
reports/cases resulted in a decrease or increase in excellent, good, fair, poor, very poor condition,
and then ultimately the CCI, 2) visually assessing the interquartile distribution of the box and
whisker plots for each condition, and 3) computing the statistical differences between the
averages in each condition change. To determine this third step, the Tukey HSD (“honestly
significant difference’) multiple comparison test was computed at the 95% confidence level.
Tukey HSD determines if the relationship between two sets of data is statistically significant in
terms of their difference in means (Ott and Longnecker, 2015). The TukeyHSD test results are

presented in the Appendices section.
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For yield assessment, week 1 and week 2 CCI was averaged and used within each
state/crop’s unique least squares regression equation to model weekly crop yield. The least
squares regression equation was computed based on the annual average CCI which has been
proven to be a useful metric when quantifying crop yield throughout the growing season (Bundy
and Gensini, 2022). The model equation for this portion of the analysis is specified below (Equ
2):

Yieldest = B; - X + B, 2
where f; is the least squares regression slope, X is the current week’s CCI, and B, is the Y-
intercept of the regression equation. If the coefficient of determination was not statistically
significant to the 95% confidence level, then those yield data for the respective state and crop
were not used. States and crops not used in the yield analysis included Texas cotton, Texas rice,
Mississippi corn, Mississippi rice, Mississippi peanuts, Florida cotton, and South Carolina
Peanuts, which consists of 13% of the reports (67 of 534). Yield was modeled based on the CCI
for week 0 and the average of week 1 and week 2 CCI to determine the yield change percentage.

Yield change percentages were also calculated between week 0 and the actual end of year yield.

3. RESULTS
3.1. Condition changes by crop

The largest movements in week 1 and 2 coverage changes were reflected in crops
considered in good and fair condition (Fig. 3). This is in large part due to crops considered in
good condition represented nearly half the total crop area across the Coastal Southern U.S., while
conditions considered fair represented 30% of the total crop area on average since 1986 (USDA,

2022). Thus, with over 3/4 of a given crop area for each state in good or fair condition, it is more
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likely for these conditions to have some of the most notable weekly changes after any weather
hazard impact. For most crops after TC impact in weeks 1 and 2, the decrease on average for
excellent and good conditions resulted in an increase in fair conditions, and to a lesser extent, an
increase in poor and very poor conditions. This is supported by a Pearson correlation coefficient
average between excellent versus CCI and good versus CCI of 0.63, and an average Pearson
correlation coefficient between fair versus CCI, poor versus CCI, and very poor versus CCI of -
0.56. Both correlations are considered large in terms of the strength of the relationship (Cohen,
1988). In other words, crops that were considered optimal for normal or above normal yield
potential (excellent or good conditions) were downgraded to a condition where yield loss is a
possibility (fair conditions) or downgraded to a condition more conducive of a heavier degree of
loss to yield potential (poor or very poor). Consequently, this resulted in a marginal decrease in
the CCI up to 4% on average for all crops in week 1 and week 2. For corn, cotton, peanuts, rice,
and soybeans, the average decrease good conditions for weeks 1 and 2 were consistent between
3-5% (Figs. 3a, 3b, 3¢, 3d, 3f). For these crops that were in fair or poor condition, averages
were somewhat variable from crop-to-crop, with resulting increases up to 3%. Differences in
averages between changes in good and fair conditions were statistically significant at the 95%
confidence level for cotton, rice, and soybeans (Appendix C). Between good and poor or very
poor conditions, the differences in average changes were statistically significant for all crops
except corn and sorghum (Appendix C). Sorghum was the only crop to not follow the general
decreasing good condition and increasing fair and poor condition (Fig. 3e). Conditions for
sorghum were generally unchanged until week 2 when good condition coverage increased and
fair condition coverage decreased on average. The distribution for both weeks, though, favored

an increase in good conditions and a decrease in fair conditions.
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Fig. 3. Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from
week 0 for each condition after a tropical cyclone impacted the respective crop area. Each box
and whisker present a six number summary: whiskers represent the 1.5 multiple of the inner-
quartile range (outliers considered but not included in plots); boxes represent first quartile (25th
percentile) and third quartile (75th percentile) values; black line horizontal within boxes

represent the median value; white squares represent the mean value. (Color not needed for print)

For these crops that were in fair or poor condition, averages were somewhat variable from crop-
to-crop, with resulting increases up to 3%. Differences in averages between changes in good and
fair conditions were statistically significant at the 95% confidence level for cotton, rice, and All

crops analyzed in this research displayed a decrease in the CCI on average and did not have
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statistically significant differences between condition changes when comparing each crop and
condition combination (Appendix D), which suggests a generally homogenous reaction amongst
crops to TC impact even with the differences in sample size (Table 1). Therefore, the similar
CCI changes to TC impacts justifies aggregating all crops in this research together for analysis in
the following sections.

While the average changes in crop conditions do display statistical differences amongst
the different condition categories, the entire distribution of the box and whiskers need to be
discussed as there is a considerable amount of variability in terms of weekly changes. Hence, the
result of a TC impact on crop conditions did not always result in detrimental changes. In fact,
only half of the cases overall resulted in a decrease in the CCI. As a whole, weekly changes in
good conditions possessed a standard deviation of nearly 10%, while fair was 8% and the
remaining conditions (excellent, poor, very poor) ranged between 3—5%. This suggests that other
factors (e.g., time of season, TC strength, precursor soil moisture) may contribute significantly to
variability across all crops.

3.2. Condition changes by month

Based on the timing of a TC with respect to the phenological stage of the crop, examining
condition changes by month revealed essential information regarding the timing risk of TC
impacts on agriculture (Fig. 4). When aggregating all crops examined in this study together, the
month of May showed only marginal evidence of an improvement in conditions (Fig. 4a). This is
supported by a decrease in good and fair conditions while there was a subtle increase in
excellent, poor, and very poor conditions; overall these subtle changes did not lead to any net
change in the CCI on average. However, the median change and overall interquartile distribution

does favor marginal improvement. In addition, 68% of the cases resulted in an increase in the
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CCI during May. TCs resulted in subtle improvements in crop conditions overall in June and
July as well (Figs. 4b, 4¢). This is reflected in the CCI changes in week 1 and week 2, which
increased up to 2% on average. Notably, conditions considered fair were upgraded to good or
excellent in June and July as the differences in averages for good/excellent conditions were

statistically different than fair and poor conditions (Appendix E).

Fig. 4. Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from
week 0 for each condition after tropical cyclone impact separated by month. Each box and

whisker present the same six number summary as described in Fig. 3. (Color not needed for

print)
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For both months, 60% of the cases resulted in an improvement in crop conditions. For August,
CCI was practically unchanged in week 1 and week 2 with no statistically significant differences
between condition averages. Also, nearly half of the cases resulted in an increase or decrease in
crop conditions, and thus, there was not strong evidence to support any major change in crop
conditions due to TC impact in August.

August served as somewhat of a transition period for change in crop conditions. In the
latter portion of the growing season, September and October displayed the largest movements in
crop conditions, suggesting these two months are the most important for crop conditions when it
comes to TC impact (Figs. 4e, 4f). This is especially true in the good and fair condition
movements as, on average, weeks 1 and 2 good conditions decreased by nearly 5% while fair
conditions increased by 1-3%. In addition, excellent conditions decreased on average by up to
3% while poor and very poor conditions increased between 2—4% on average for both week 1
and week 2 changes. The changes in excellent and good conditions for week 1 and week 2 within
September and October were statistically significantly different than the changes in fair, poor,
and very poor conditions with 95% confidence (Appendix E). When comparing September and
October with May, June, July, and August, statistically significant differences across condition
changes were observed (Appendix F). The result for both months was a decrease in the CCI by
3-4%, which was the strongest crop condition change signal for the growing season. This is also
supported by both interquartile ranges for these months being at or below 0 for the CCI with
nearly 66% of cases resulting in a decline in crop conditions.

Even when aggregated by month, there was still a respectable amount of variability. Still,

monthly aggregation was a statistically significant predictor of crop condition changes after TC
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impact, suggesting crop phenology is important when assessing the specifics of TC impacts on
field crops in the Coastal South.
3.3. Condition changes by tropical cyclone intensity

In addition to growing season timing, TC intensity also plays a significant role in crop
condition changes. Overall, the strength of a TC was the most statistically significant predictor of
crop condition changes when including all variables. When all crops are aggregated together,
tropical depressions and tropical storms did not tend to impact average conditions (Figs. Sa, Sb).
Furthermore, the average CCI had nearly 0% change in both weeks 1 and 2, and there were no
statistically significant differences between the averages of condition changes (Appendix G).

Once TCs reached hurricane status, noteworthy changes in conditions were observed as
statistically significant changes between excellent/good and fair/poor/very poor were observed
(Appendix G). For category 1 and category 2 hurricanes, crops rated in good condition decreased
in week 1 and week 2 between 5-8%, which consequently resulted in an increase in fair, poor,
and very poor condition coverage ranging between 1-4% on average (Figs. Sc, 5d). The
interquartile distributions of the box and whisker plots for both category 1 and 2 hurricanes were
near or below 0% change in excellent and good conditions. Meanwhile, the interquartile
distribution for poor and very poor conditions were near or above 0% change. As a result, the
CClI interquartile distribution was at or below 0%. Nearly 66% of all cases resulted in a decrease
in crop conditions after category 1 or 2 hurricane impact. When hurricanes reached “major
hurricane” status at category 3 or higher, the resulting detrimental crop condition changes were

more substantial (Figs. Se, 5f).
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Fig 5. Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from

week 0 for each condition after tropical cyclone impact separated by tropical cyclone strength.

Each box and whisker present the same six number summary as described in Fig. 3. (Color not

needed for print)

As is the general trend with the other results, a general decrease in excellent and good conditions

resulted in an increase in fair, poor, and very poor conditions for category 3 and category 4

hurricane impacts. For category 3 hurricanes, the decrease in good conditions in week 1 neared

10%. This decrease was even higher for category 4 hurricanes (13%). As a result, the CCI

decrease after being impacted by category 3 or category 4 hurricanes was near 5% and 9%



428  respectively for both week 1 and week 2. In total, 70% of the cases for category 3 hurricane
429  impact resulted in a decline in crop conditions while 83% of the category 4 hurricane cases

430  resulted in a decline. The interquartile distribution for category 3 and 4 hurricanes was also
431  similar to category 1 and 2 impact, which further emphasizes the significant relationship between
432 TC strength and crop condition changes. Also, when comparing the changes for each condition
433 with each TC strength combination, statistically significant differences were noted when

434  comparing the condition changes for hurricanes against tropical storms and depressions

435  (Appendix H).

436  3.4. Condition changes under precursor soil moisture conditions

437 Soil moisture conditions prior to TC impact along with the time of the growing season
438  also plays a vital role in whether crops may benefit from TCs. For instance, during certain

439  phenological stages of crop development, depending on the status of the crop (e.g., dry, wet),
440  TCs may yield positive or negative impacts on crop conditions (Fig. 6). Precursor (week before
441  TC impact) PMDI conditions were also a statistically significant predictor of crop condition
442  changes. Under precursor PMDI conditions considered wet (PMDI > 2.0), on average, crop
443  conditions did not improve in any part of the growing season (Figs. 6a, 6b, 6¢). In the early
444  portion of the growing season (May and June), TCs negatively impacted crop conditions when
445  precursor PMDI conditions were wet (Fig. 6a). Thus, fields that were at least already at least
446  moderately moist and became saturated after a TC did not typically improve the quality of the
447  crop. This is supported by the statistically insignificant differences between excellent and good
448  conditions compared to fair, poor, and very poor conditions to the 95% confidence level

449  (Appendix I). During the middle portion of the growing season, there was no statistical support

450  to suggest TCs improve or deteriorate crop conditions, on average (Fig. 6b; Appendix I).
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Fig. 6. Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from
week 0 for each condition after tropical cyclone impact separated precursor soil moisture
condition and seasonal timing. Each box and whisker present the same six number summary as

described in Fig. 3. (Color not needed for print)

Therefore, if precursor soil moisture conditions were already optimal during the critical

reproduction period of the growing season, conditions remained stable after a TC impact.
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By the latter portion of the growing season under wet precursor conditions, crops under excellent
or good conditions decreased in coverage resulting in an increase in coverage of crops in fair,
poor, or very poor condition on average (Fig. 6¢). This was supported by the statistically
significant differences between excellent (more so in week 2) and good conditions compared to
fair, poor, and very poor conditions (Appendix I). As a result, the decline in favorable conditions
resulted in a decrease in the CCI for both week 1 and week 2 on average by 2-4%.

Under dry precursor soil moisture conditions, or conditions that are at least considered in
a moderate drought (PMDI < -2.0), TCs did benefit crop conditions overall in the early and
middle portions of the growing season (Figs. 6d, 6e). This was reflected by subtle differences
between excellent with good conditions as compared to fair conditions in the early portion of the
growing season, which resulted in a CCI increase between 1-3%. During the middle portion of
the season, the greatest movements were observed in good conditions (increase in coverage) and
in poor and very poor conditions (decrease in coverage) resulting in a CCI increase between 2—
3%. However, by the latter portion of the growing season, even under drought conditions, TCs
caused crops that were in excellent and good condition tend to be downgraded to fair and poor
condition on average (Fig. 6f). These were the only changes in the growing season under dry
precursor soil moisture conditions that were statistically significant to the 95% confidence level
(Appendix I). The result was a decrease in the CCI between 2-3%.

Near-normal precursor soil moisture conditions were present in 63% of the cases in this
study. When these conditions were present prior to TC impact, after the TC, crop conditions
generally remained stable on average as there were no statistically significant differences
between conditions for week 1 and week 2 in the early and middle portion of the growing season

(Figs. 6g, 6h; Appendix I), resulting in no change to CCI. It was not until the latter portion of the
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growing season when conditions that were excellent or good downgraded to fair, poor, or very
poor condition on average, with CCI decreases of nearly 5% (Fig. 6i). When comparing the total
crop condition changes (CCI) for all precursor soil moisture conditions and timing, statistically
significant differences were noted between near normal and wet precursor conditions in the latter
portion of the growing season versus the early and middle portions (Appendix J).
3.5. Yield changes

When working with USDA crop condition data, an essential component to the
communication and interpretation of the data is how yields respond to variations in the CCI
(Bundy and Gensini, 2022). This is a crucial part of the analysis as not only does further the
understanding of yield responses to tropical cyclones, it also confirms the use of the USDA crop
condition dataset for in season risk assessment and future analyses. As the CCI increases, yield
prospects generally increase as well across most crops and states analyzed in this research (Fig.
7). There is a varying level across all crops and states of how much the CCI can explain
variability in yield, and therefore, should be used in practice with caution. Corn tends to have the
strongest correlation between CCI and yield as the average coefficient of determination in the
Coastal Southeast U.S. region is 0.63, with South and North Carolina possessing the highest
coeffients of determination for any state-crop combination at 0.87 and 0.80, respectively (Fig.
7a). The next strongest relationship between crop condition ratings (CCI) and yield is for
soybeans across the region as the average coefficient of determination is 0.44. Similar to corn,
states along the Atlantic Ocean coast possess the stronger connection between the CCI and
soybean yield (Georgia, South Carolina, North Carolina) versus states along the Gulf Coast

(Texas, Louisiana, Mississippi, Alabama; Fig. 7f). Cotton, peanuts, and sorghum all have similar



504 relationships between CCI and yield with coefficient of determination averages for the region of

505 0.35, 0.33, and 0.38, respectively (Figs. 7b, 7¢c, 7e).
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507  Fig. 7. Annual average Crop Condition Index (CCI) values plotted against annual yield values
508 for each state paneled by crop in the Coastal Southern U.S. region: a) corn, b) cotton, ¢) peanuts,
509  d)rice, €) sorghum, f) soybeans. Regression r? and p values are listed next to their respective
510  states.
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Rice is the lowest in terms of the CCI relationship with yield as the coefficient of determination
average in the region is 0.14. Nonetheless, the CCI can still explain a statistically significant
(95% confidence level) amount of the variability in rice yield. The specific linear model
equations for each regression line in Fig. 7 can be utilized from Appendix K.

Between each crop, yield changes were generally homogeneous (Fig. 8a). Statistically,
there were no significant differences between each of the respective crops for after the TC and
for end of year yield to the 95% confidence level (Appendix L). After a TC, modeled yield

changes were marginal as changes ranged between -1-1% on average for each crop.
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Fig. 8. Change in yield percentages one week after a tropical cyclone impacts a cropping area
(darker hue) and the difference between the yield forecast and actual yield (lighter hue) paneled
by cropping type, month, intensity, and soil condition and timing. Each box and whisker present

the same six number summary as described in Fig. 3. (Color not needed for print)
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The same holds true for end of season yield as each crop displayed only marginal changes
ranging between -1-2% (Fig. 8a). When examining end of season yield, variability was much
greater compared to modeled yield changes after the week 1 and week 2 average changes due to
improvements in conditions or worsening conditions after TC impact (based on the remainder of
the growing season’s weather conditions).

Aggregating all crops together for the yield analysis, the percentage changes were
aggregated together rather than the actual yield numbers to avoid production biases. When all
crops were aggregated together and examined on a monthly interval, September and October
compared to July and August were the only months in which the average change in modeled
yield percentages after TC impact were statistically different (Fig. 8b; Appendix L). Within
September and October, average modeled yield changes between week 1 and week 2 crop
conditions resulted in about a 3% decrease in yield. Actual end of year yield changes amounted
to a 2% decrease in yield within September and October. When examining yield response by TC
intensity, modeled yield changes as well as end of year yield changes tended to increasingly
worsen on average as the TC intensity increases (Fig. 8c¢). After tropical depression impact, yield
tended to slightly improve for both modeled changes and actual end of year changes (+1-2%).
On average, tropical storms did not tend to impact yield in any direction. Once hurricane status
was reached, modeled yield changes decreased between 3-6% after TC impact, and end of year
yield numbers also decreased 1-3%.

When examining yield response to TC impacts based on precursor soil moisture
conditions (Figs. 8d, 8e, 8f), the trend was generally the same as the crop condition responses.

Thus, under wet precursor conditions during the early and latter portion of the growing season



548

549

550

551

552

553

554

555

556

557

558

559

560

561

resulted in modeled yield changes and to an extent, end of year yield changes to decrease on
average by 1-5%. Under near-normal precursor soil moisture conditions, yield decreased during
the latter portion of the growing season on average after TC impact by 3—4%. Under dry
conditions, TCs tended to improve yield during the early and middle portions of the growing
season while decreasing yield in the latter portion of the growing season by up to 2% on average.
From and event by event standpoint, the top five TCs based on the crop condition
changes and yield changes after the TC all had common attributes (Table 2). These TCs had a

maximum strength of tropical depression or tropical storm and occurred in August or earlier.

Table 2. Top five most beneficial and detrimental tropical cyclone events based on crop
condition and yield projection response (1986-2021). Crop Condition Index (CCI) Change, Yield
Change, and End of Year Yield Change were averaged across all states and crops examined for

the tropical cyclone. No ranking is established in this table.

Tropical Cyclone Events Beneficial for Crops

Yield End of Year

Name Max Strength Dates Crops States CCl Change Change VYield Change
Danny 1997 TS 7/21-7/24  Cor, Cot, Pea, Soy AL, FL, NC, SC 4.1% 6.3% 3.5%
Beryl 1988 D 8/10-8/10  Cot, Ric, Sor, Soy LA 1.8% 7.6% 9.7%
Isaias 2020 TS 8/4 - 8/4 Cor, Cot, Pea, Soy NC 4.0% 5.3% -1.6%
Jerry 1995 TD 8/25-8/27 Cor, Cot, Soy GA 4.7% 4.0% 6.6%
Cindy 2005 TD 7/6-7/7 Cot, Pea AL 5.8% 3.5% -0.8%

Tropical Cyclone Events Detrimental for Crops

Yield End of Year

Name Max Strength Dates Crops States CCI Change Change Yield Change
Hugo 1989 H4 9/22-9/22 Cor, Cot, Soy NC, SC -23.1% -18.6% -3.9%
Floyd 1999 H1 9/16-9/16  Cor, Cot, Pea, Soy NC -12.0% -16.2% -13.9%
Fran 1996 H3 9/6-9/6 Cor, Cot, Pea, Soy NC -9.0% -10.9% -3.9%

Matthew 2016 H1 10/8 - 10/8 Cot, Pea, Soy SC -12.9% -9.9% -12.5%
lvan 2004 H3 9/16 -9/17 Cot, Pea AL -11.3% -7.4% 0.9%




562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

In addition, four of the five TCs went over cropland area with precursor PMDI values near-
normal or drier than normal. On average, the range of CCI increase for these top events averaged
across the study domain and across all crops was a 1.8%-5.8% increase while the modeled yield
chances after the TC ranged between an increase of 3.5%—7.6%. Not all the top events resulted
in a yield increase by the end of the growing season though, which is due to potential weather
impacts after the TC that resulted in a decline in crop conditions and yield. For the TC events
that were most detrimental to crops in the Coastal Southern U.S. region, another pattern is
established in that the maximum strength of the TC reached hurricane status and occurred in
September or later. Precursor soil moisture values were mixed for these events as they ranged
from drier than normal to wetter than normal. Category Four Hugo in 1989 resulted in a regional
average CCI decrease of 23.1% and yield prospect decrease of 18.6%. Though the largest end of
year yield decrease (13.9%) came with Category One Floyd in 1999 that impacted four different
crops in North Carolina. Since 1986, four of the five most detrimental TC events to crop

conditions and yield across the study region occurred in North and South Carolina.

4. DISCUSSION

Within the 36-year (1986-2021) study period, impacts of TCs were both positive and
negative for overall crop quality and yield. In response to local topography, soils, land use,
access to transportation, and weather patterns, agriculture in the Coastal South U.S. is highly
heterogeneous (Knox et al. 2014). This is somewhat in contrast to what was quantified in this
study as analysis of variance indicated that there were no statistical differences amongst field
crop responses to TCs (Fig. 3; Appendix D). However, this study examined the effects of TCs

since 1986 across eight states using state-level data for six field crops, which was previously
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noted as a limitation to this work. In other words, the publicly available state-level data may not
be able to capture the heterogeneities the Coastal Southern U.S. agricultural region possesses,
especially since hybrid characteristics can influence the rate of grain drying become more
important during unfavorable conditions such as a TC (Troyer and Ambrose, 1971; Cavalieri and
Smith, 1985).

The latter portion of the growing season is critical for crop quality and yield impacts from
TCs as some of the most notable negative changes were observed in September and October
(Figs. 4e, 4f, 6¢, 6f, 6i, 8b, 8d, 8e, 8f). These negative changes in crop conditions and crop yield
can be attributed to a few nontrivial factors. The point made about grain drying seems to be an
essential one given the overall negative crop quality and yield reactions to TCs in the latter
portion of the growing season. Harvest time, which runs from late August through late October
for the field crops examined in this study, is a period when dry conditions are more favorable for
crop quality. Before harvest, grain crops need to undergo a drydown period to achieve maturity
and begin harvest, making this important for maximizing yield (Coulter, 2008; Nielson, 2018).
For example, ideal harvest moistures for corn ranges from 15-20%, or higher (Elmore and
Abendroth, 2010). Delaying harvest until corn dries increases the risk for frost damage, and
fields with poor stalk quality become increasingly susceptible to stalk lodging (Cleugh et al.
1998; Lindsey et al. 2021). As a result, harvest efficiency decreases and the potential for
significant yield loss increases. The same can be said about other crops in this analysis including
cotton, rice, sorghum, and soybeans where a critical drydown period is essential for maturity,
harvest, and maximizing yield (Philbrook and Oplinger, 1989; Zhang et al. 1996; Elmore and
Roeth, 2013; Kebebe et al., 2015). On the other hand, peanut crops need adequate moisture

before harvest so that plants do not get pulled off the vines and then are left in the ground as a
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result of drier conditions. For cotton, too much moisture from rainfall as seeds inside the bolls
get too wet and start sprouting, consequently, reducing the quality and yield (Zuberer and
Kenerley, 1993; Landivar and Benedict, 1996; Mailhot et al., 2012). In addition, peak harvest
time is concurrent with peak TC frequency in the Coastal Southern U.S.; thus impacting 1) soil
moisture in fields making them difficult for machinery to harvest the crop, and 2) as mentioned,
the quality of crops that require ample drying time during maturity (Knox et al., 2014; Nielson,
2018). This may also explain why TCs did not show any evidence of improving crop conditions
even when precursor soil moisture conditions were considered dry during the latter portion of the
season (Fig. 8f). On the other hand, TCs did act to improve overall crop conditions and crop
yield prospects in the early and middle stages of the growing season (Figs. 4b, 4c, 6d, 6e, 8b, 8e,
8f) due to crops requiring adequate soil moisture during the developing and reproductive stages
in the phenological cycle. Therefore, TCs do provide some benefits to crops if the timing is
correct.

Analyzing crop condition response with TC classification, or intensity, also presented
results that were to be expected when considering increased wind speeds with higher
classifications. That is, the greater the intensity, the higher likelihood of a decrease in optimal
crop conditions (Fig. 5). As noted, this can be explained in part by the increase in winds with an
increase in TC intensity category, as stronger winds create a higher likelihood of greensnap and
root lodging. In addition, a statistically significant positive correlation has been found between
maximum wind speeds in TCs with average TC-induced rainfall totals (Cerveny and Newman,
2000). Though, this correlation is not always clear, and future work may examine the impacts
TCs have on agriculture based on rainfall totals. This would require a higher resolution crop

condition dataset, such as the recently released gridded crop condition dataset by the USDA
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NASS which dates to 2015 (Rosales, 2021). The result was a greater decrease in crop condition
ratings conducive of optimal yield potential. Excess rainfall at any point in the growing season
can cause physical damage to crops by ponding and waterlogging which can lead to root rot, soil
erosion and salinity, and sprouting of grains, which ultimately can lead to a reduction in optimal
crop condition coverage and potentially a reduction in yield (Li et al., 2019; Bundy and Gensini,
2022). In addition, the strongest TCs are favored during the latter portion of the growing season
(NHC, 2022). This is important because TCs during the latter portion of the growing season not
only can cause greensnap and root lodging, but waterlogging can prevent field work operations
during the harvest period.

In terms of resilience, agricultural producers and other stakeholders need climate data and
information such as the results of this study due to the importance of decision making and
adaptation strategies (Changnon, 2007). Furthermore, the interactions among producers and
meteorologists plays a critical role in increasing the integration and use of climate knowledge for
adaption (Brugger et al., 2016). Such adaptation strategies can be in the form of shifting
production systems, investing in crop insurance, or advancing in crop management, technologies,
and/or hybrids that are more resilient to the potential detrimental effects TCs have on crop

conditions.

S. CONCLUSIONS

The Coastal Southern U.S. is uniquely vulnerable to tropical cyclone (TC) impacts during
each growing season. Statistically significant differences between crop condition categories
revealed that TCs do have a notable impact on agriculture in this region. The overall tendency is

for crops in excellent and good condition to be downgraded to fair, poor, and very poor condition
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after a TC impact. Corn, cotton, peanuts, rice, sorghum, and soybean displayed similar condition
changes after TC impact, and thus, were aggregated together since crop type was not a
statistically significant predictor of condition changes. TC intensity was the most statistically
significant predictor of crop condition changes in the Coastal Southern U.S. Crops were most
negatively impacted when 1) crops are in the latter portion of the growing cycle thus requiring
drier conditions for maturity and fieldwork operations, 2) the TC reached major hurricane status,
and 3) when precursor soil moisture conditions were in any state of surplus in the latter portion
of the growing season. Consequently, yield prospects decline after a TC based on the declines in
coverage of excellent and good conditioned crops (yield declines of 1-6% on average); though,
crop conditions tend to recover resulting in yield prospects to also recover to a marginal extent
by the end of the season (declines of up to 3%). Overall, the statistics presented in this study
provide a general overview of crop quality and crop yield responses to TCs, which had not been
quantified to this point in literature. Quantifying these week-to-week changes in crop condition
ratings after TC impact provides risk assessment information for agricultural producers in this
region. This may aid in the decision-making process regarding crop management and protection,
potentially in the form of insurance, especially during critical periods such as harvest in order to
maximize revenue. Under a changing climate, uncertainty in TCs trends further emphasizes the
need for resilience and mitigation efforts in order to ensure a more sustainable agricultural

system in the important agricultural sector that is the Coastal Southern U.S.
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702  Appendix A. Average annual production (kg in millions) at county-level for each crop examined
703  in the Coastal Southern U.S. region (1986-2021). Locations within the study area without a

704  county outline did not have any production for the respective crop. (Color not needed for print)
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Appendix C. TukeyHSD multiple comparisons results between each condition combination by

crop for both week 1 and week 2. Table displays the differences between the means along with

the corresponding p values. Bolded text represents statistical significance at 0.05 significance

level.
Corn Cotton Peanuts Rice Sorghum Soybeans

Week1 | Week2 | Week1l | Week2 | Week1l | Week2 | Week1l | Week2 | Week1 | Week2 | Week1l | Week2

Diff p-val | Diff p-val [ Diff p-val | Diff p-val | Diff p-val | Diff p-val [ Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val
F-E -0.73 0.818|-0.81 0.95|0.76 0.884(1.28 0.639(-0.15 1 |-0.49 0.998|0.48 0.998| 3.52 0.201(-0.28 0.998| 1.71 0.667|2.19 0.147|2.14 0.367
G-E -0.75 0.796(-1.64 0.502|-2.56 0.003(-2.28 0.07 |-2.21 0.128(-2.31 0.284|-3.70 0.041|-2.25 0.854(0.28 0.998| 0.91 0.988(-2.79 0.025|-3.89 0.005
P-E 0.25 0.998|0.74 0.929(0.97 0.731|1.71 0.3160.31 0.999{0.21 1 |0.40 0.999|2.57 0.55|-0.03 1 |1.20 0.899|2.11 0.179(0.97 0.949
VP-E |-0.09 1 |[0.37 0.997|1.26 0.456(1.50 0.468| 0.56 0.977(-0.41 0.999|0.63 0.991|1.74 0.87 [0.58 0.948|0.47 0.998(0.69 0.973|-0.01 1
G-F -0.03 1 (-0.83 0.945|-3.33 3E-05(-3.56 3E-04|-2.05 0.187(-1.82 0.556|-4.18 9E-05|-5.78 0.002| 0.56 0.958|-0.80 0.98 (-4.98 7E-07|-6.03 7E-07
P-F 0.98 0.556|1.55 0.285(0.21 1 |0.42 0.996|0.46 0.995|0.70 0.988(-0.08 1 |-0.95 0.912|0.25 0.999|-0.50 0.984|-0.08 1 (-1.17 0.893
VP-F 0.64 0.886|1.18 0.591| 0.50 0.979]0.22 1 0.71 0.935(0.07 1 0.15 1 |(-1.78 0.391|0.86 0.775|-1.23 0.548(-1.50 0.553|-2.15 0.361
P-G 1.00 0.528(2.38 0.025|3.53 7E-06|3.99 3E-05|2.52 0.052|2.52 0.193|4.10 1E-04(4.83 0.017(-0.31 0.997|0.29 1 [4.90 1E-06(4.86 1E-04
VP-G |0.66 0.868|2.02 0.093|3.83 7E-07(3.78 1E-04|2.76 0.003|1.90 0.51 |4.33 8E-06|3.99 0.084(0.31 0.997|-0.44 0.999|3.48 0.002| 3.88 0.005
VP-P |-0.34 0.993(-0.36 0.985| 0.29 0.998(-0.21 1 0.24 1 |[-0.63 0.993]0.23 0.999|-0.84 0.946|0.61 0.937(-0.73 0.921|-1.42 0.614(-0.98 0.947
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Appendix D. TukeyHSD multiple comparisons results between each crop combination by

condition for both week 1 and week 2. Table displays the differences between the means along

with the corresponding p values. Bolded text represents statistical significance at 0.05

significance level.

Crop Condition

Excellent Good Fair Poor Very Poor
Index

Week1 | Week2 | Week1l | Week2 | Week1 Week2 | Week1 Week2 | Week1l | Week2 | Week1l | Week2

Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val| Diff p-val| Diff p-val| Diff p-val | Diff p-val | Diff p-val| Diff p-val | Diff p-val
Cot-Cor (-0.37 0.987(-0.84 0.786|-2.19 0.509-1.47 0.939| 1.11 0.833| 1.43 0.856| 0.35 0.994| 0.35 0.994|0.98 0.439|0.86 0.51 |-1.37 0.324(-1.36 0.645
Pea-Cor {010 1 |020 1 |-1.36 0.916(-046 1 |0.67 0.984{0.70 0995|016 1 |0.16 1 |[0.31 0.994|-0.01 1 |-0.55 0.974|-0.04 1
Ric-Cor |-0.05 1 |-1.95 0.394|-2.80 0.676(-2.44 0.924|2.73 0.356|1.42 0.978|-0.10 1 |-010 1 (009 1 |012 1 |-0.81 0.967(-3.36 0.157
Sor-Cor (-0.40 0.997(-0.70 0.976|0.63 0.999| 2.19 0.933] 0.05 1 |-052 1 |-0.68 0.978(-0.68 0.978|0.27 0.999| 0.03 1 |-007 1 |0.29 1
Soy-Cor |-0.73 0.844(-0.24 0.999|-2.77 0.324|-2.49 0.704(2.19 0.237|2.89 0.265|1.13 0.556|1.13 0.556|0.05 1 (-0.04 1 |-1.43 0.367|-0.83 0.957
Pea-Cot | 0.47 0.942| 1.04 0.482|0.83 0.978(1.01 0.981|-0.44 0.995|-0.73 0.987|-0.19 0.999|-0.19 0.999(-0.67 0.725|-0.87 0.386| 0.82 0.752(1.32 0.568
Ric-Cot | 0.32 0.999|-1.11 0.85 |-0.61 0.999|-0.97 0.998| 1.62 0.799|-0.01 1 (-0.44 0.996|-0.44 0.996|-0.88 0.834(-0.75 0.909| 0.56 0.991|-1.99 0.639
Sor-Cot (-0.03 1 0.14 1 2.82 0.562]3.67 0.508|-1.06 0.956(-1.95 0.844|-1.02 0.836|-1.02 0.836(-0.71 0.922|-0.83 0.81 | 1.30 0.709|1.66 0.728
Soy-Cot (-0.35 0.983| 0.60 0.915|-0.58 0.996(-1.01 0.983|1.08 0.79 | 1.46 0.796|0.79 0.742|0.79 0.742|-0.93 0.382(-0.91 0.356|-0.05 1 |[0.54 0.986
Ric-Pea |-0.15 1 |-2.15 0.242|-1.44 0.968(-1.98 0.962| 2.06 0.624|0.72 0.999|-0.26 1 |-0.26 1 (-0.21 1 |012 1 |-0.26 1 [-3.32 0.135
Sor-Pea [-0.50 0.99 [-0.90 0.917|1.99 0.872|2.65 0.834(-0.62 0.997|-1.22 0.981|-0.84 0.935|-0.84 0.935|-0.04 1 (004 1 |0.48 0996|033 1
Soy-Pea (-0.82 0.685(-0.44 0.984|-1.41 0.868|-2.02 0.798| 1.52 0.548| 2.18 0.49 | 0.97 0.621|0.97 0.621|-0.26 0.996(-0.04 1 |-0.88 0.774(-0.79 0.951
Sor-Ric |-0.35 0.999(1.25 0.894|3.43 0.63 | 4.63 0.582(-2.68 0.556|-1.94 0.953|-0.58 0.995|-0.58 0.995|0.18 1 (-0.09 1 |0.74 0.989|3.65 0.203
Soy-Ric |-0.68 0.963|1.71 0.51 (0.04 1 |-0.04 1 [-0.54 0.999|1.47 0.971|1.23 0.754|1.23 0.754|-0.05 1 |-0.16 1 [-0.61 0.989|2.53 0.42
Soy-Sor (-0.33 0.999( 0.46 0.996|-3.40 0.395|-4.68 0.285| 2.14 0.564|3.41 0.363|1.81 0.323|1.81 0.323|-0.22 1 |[-0.07 1 |-1.35 0.711(-1.12 0.946
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Appendix E. TukeyHSD multiple comparisons results between each condition combination by

month for both week 1 and week 2. Table displays the differences between the means along with

the corresponding p values. Bolded text represents statistical significance at 0.05 significance

level.
May Jun Jul Aug Sep Oct

Week1 | Week2 | Week1l | Week2 | Week1l | Week2 | Week1l | Week2 | Week1l | Week2 | Week1l | Week?2

Diff p-val| Diff p-val | Diff p-val| Diff p-val | Diff p-val| Diff p-val| Diff p-val | Diff p-val| Diff p-val| Diff p-val | Diff p-val| Diff p-val
F-E -2.60 0.501|-2.47 0.666(-2.07 0.199|-3.12 0.017 (-3.55 1E-06(-4.37 5E-04| 0.86 0.371|0.42 0.99 |2.22 0.028|4.02 6E-04|2.96 0.301|5.58 0.021
G-E -0.53 0.999|-4.40 0.091(-0.86 0.93 |-0.20 1 (-1.60 0.146(-1.05 0.917|-1.04 0.175|-1.20 0.502(-3.60 1E-05|-4.68 3E-05|-3.00 0.285(-0.91 0.995
P-E -0.13 1 |-1.13 0.983|-0.53 0.992|-0.83 0.955|-2.02 0.027|-1.79 0.527|-0.18 0.998|-0.48 0.982|2.06 0.053|3.73 0.002| 6.24 2E-04|5.79 0.014
VP-E -0.07 1 |-1.33 0.965|-0.53 0.992|-1.44 0.668|-1.65 0.123|-1.68 0.597|-0.13 1 |-0.32 0.997|1.78 0.142|2.36 0.151|3.37 0.171|4.70 0.083
G-F 2.07 0.731]-1.93 0.847(1.20 0.765|2.92 0.032|1.94 0.038(3.32 0.02 |-1.90 3E-04|-1.61 0.174(-5.82 0 |-8.70 0 |-5.96 5E-04(-6.48 0.004
P-F 2.47 0.559(1.33 0.965|1.54 0.526|2.29 0.168|1.53 0.187|2.58 0.137|-1.04 0.169|-0.90 0.778|-0.16 1 |-0.29 1 |3.28 0.194|0.21 1
VP-F 2.53 0.53 (1.13 0.983|1.54 0.526|1.68 0.506|1.90 0.048|2.69 0.107|-0.99 0.221|-0.73 0.892|-0.44 0.991|-1.66 0.534|0.41 1 |-0.88 0.996
P-G 040 1 |3.27 0.359|0.34 0.999(-0.63 0.987(-0.41 0.989|-0.74 0.981|0.85 0.381(0.71 0.903|5.66 0 (841 O [(9.24 0 |6.70 0.002
VP-G 0.47 1 |3.07 0.432]|0.34 0.999(-1.24 0.794(-0.05 1 |-0.63 0.991|0.91 0.307(0.88 0.794(5.38 0 (7.04 0 |6.37 2E-04|5.61 0.019
VP-P 007 1 (020 1 |000 1 |-0.61 0.988(0.36 0.994{0.11 1 |0.06 1 (016 1 |-0.28 0.999(-1.37 0.726(-2.87 0.335|-1.09 0.989




754  Appendix F. TukeyHSD multiple comparisons results between each month combination by each
755  condition for both week 1 and week 2. Table displays the differences between the means along
756  with the corresponding p values. Bolded text represents statistical significance at 0.05

757  significance level.

758

Excellent Good Fair Poor Very Poor Crop Condition

Index

Week1 | Week2 | Week1 | Week2 | Week1l | Week2 | Week1 | Week2 | Week1l | Week2 | Week1l | Week2

Diff p-val | Diff p-val | Diff p-val [ Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val [ Diff p-val | Diff p-val

May-Jun |-013 1 [075 0993|020 1 |[-345 0.908(-0.66 0.999| 140 0994|026 1 [045 1 |033 1 |086 0962(-024 1 |-1.03 0.99

May-Jul -1.09 0933|009 1 [054 1 |-326 0917]|-0.96 0.996| 1.99 0.965| 1.03 0.964| 0.75 0.997| 0.48 0.998 | 0.43 0.998 | -0.90 0.984|-1.17 0.991

May-Aug | 077 0981| 1.59 0.784| 1.12 0.998-1.17 0.999 |-3.13 0.511|-1.30 0.994| 0.53 0.998| 0.94 099 | 0.64 099 [ 057 0992|018 1 |030 1

Jun-Jul 096 0743|-0.66 0957(034 1 [019 1 |-030 1 |059 0999|077 0917|030 1 [015 1 |-0.42 0.983|-0.66 0.965|-0.15 1

Jun-Aug [ 090 0692|084 0827|092 0986|228 0.79 |-2.47 0.151|-270 0.331| 0.26 0.999| 0.49 0.993| 0.32 0.995(-0.28 0.995| 0.43 0.992| 1.33 0.808

Jul-Aug 1.86 0.011| 1.50 0.147| 0.58 0.997| 2.10 0.772|-2.17 0.166 |-3.29 0.067|-0.50 0963|019 1 [017 1 |014 1 |1.08 0549|147 0625

Sep-May |-1.16 0.897|-3.08 0.119|-423 0.518(-3.36 0.892(3.66 0.323|3.41 0.699| 1.04 0.955| 1.79 0.849| 0.69 0.986| 0.62 0.988|-224 0.496|-3.44 0.438

Sep-Jun |-1.29 0.286|-2.33 0.01 |-4.02 0.041|-6.80 0.002( 3.00 0.035| 4.81 0.004| 1.30 0.382| 223 0.098| 1.02 0.5 | 1.48 0.073|-2.48 0.007 | -4.47 4E-04

Sep-Jul -2.25 7E-04|-2.99 2E-05|-3.68 0.033(-6.62 4E-04| 2.71 0.033| 540 1E-04| 2.06 0.008| 2.53 0.013| 1.16 0.219| 1.05 0.252-3.14 2E-05|-4.62 2E-05

Sep-Aug | -0.39 0.954|-1.49 0.039-3.10 0.024|-4.52 0.007| 0.53 0978 2.11 0.256 | 1.56 0.018| 2.72 3E-04| 1.33 0.021| 1.19 0.034|-2.06 0.001|-3.14 8E-04

Sep-Oct 142 0288 1.82 0.281| 0.82 0.994|-1.95 0.951| 0.69 0.99 |[026 1 |-276 0.003|-024 1 |-017 1 |-0.51 0.975| 1.69 0.265| 0.43 0.999

Oct-May |-2.58 0.273|-4.90 0.007|-5.05 0.427|-1.41 0.999 | 2.98 0.666| 3.15 0.858| 3.79 0.049| 2.02 0.859| 0.86 0.976| 1.13 0.911[-3.93 0.061|-3.87 0.467

Oct-Jun |-271 0.01 |-4.15 4E-04|-485 0076|-4.85 0387|231 0492|455 0.161| 4.05 7E-05| 2.47 0337|119 0.623| 1.99 0.108|-4.17 1E-04|-4.90 0.015

Oct-Jul -3.67 2E-05|-4.81 5E-06|-4.51 0.082-467 0373|202 0575|514 0.052|4.82 1E07| 277 0.167| 1.33 042 | 1.57 0.274|-4.83 8E-07-5.05 0.006

Oct-Aug  |-1.81 0.087|-3.31 0.002(-3.93 0.106|-257 0.856(-0.15 1 | 1.85 0.879|4.32 2607|296 0.07 | 1.50 0.186| 1.70 0.127|-3.75 5E-05|-3.57 0.077
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Appendix G. TukeyHSD multiple comparisons results between each condition combination by

tropical cyclone intensity for both week 1 and week 2. Table displays the differences between the

means along with the corresponding p values. Bolded text represents statistical significance at

0.05 significance level.

D TS H1 H2 H3 H4

Week1 | Week2 | Week1l | Week2 | Week1l | Week2 | Week1 | Week2 | Week1 | Week2 | Week1l | Week2

Diff p-val | Diff p-val| Diff p-val| Diff p-val | Diff p-val | Diff p-val| Diff p-val| Diff p-val | Diff p-val | Diff p-val| Diff p-val| Diff p-val
F-E -0.3 0.992|-1.0 0.544|-0.3 0.981(-0.3 0.992| 3.6 0.02| 4.6 0.137| 45 0.111| 5.2 0.051| 1.2 0.995| 0.2 1 | 6.6 0.804|12.8 0.362
G-E -0.7 0.703| -0.9 0.691(-0.8 0.484(-1.3 0.253| -4.9 4E-04| -6.3 0.011| -5.7 0.017( -5.4 0.037|-10.5 3E-04| -6.5 0.207|-11.1 0.283(-13.5 0.304
P-E -0.6 0.886|-1.2 0.423( 0.2 0.997 0.2 1 5.1 2E-04| 5.9 0.022| 3.9 0.233| 5.2 0.047| 2.3 0.929| 6.6 0.201| 6.3 0.831| 6.7 0.903
VP-E -0.6 0.808|-1.0 0.544| 0.3 099 (-0.1 1 |25 0.253| 3.4 0.465| 3.1 0.519| 3.6 0.341| 1.5 099 | 3.9 0.745( 7.9 0.658| 6.3 0.923
G-F -0.4 0.957| 0.1 1 |-0.5 0.896|-09 0.605(-8.5 0 (-10.9 2E-07|-10.3 2E-07|-10.5 2E-07(-11.7 4E-05| -6.8 0.175|-17.6 0.013|-26.2 0.002
P-F -0.3 0996|-0.1 1 |05 0.846( 0.5 0.948| 1.5 0.792| 1.3 0.984|-0.6 0.999| 0.1 1 | 1.0 0.998| 6.3 0.236(-0.3 1 |-6.1 0.934
VP-F -0.3 0.985( 0.0 1 0.6 0.773| 0.2 0.999| -1.2 0.916| -1.2 0.986( -1.5 0.961| -1.5 0.958| 0.2 1 3.7 0.792( 1.3 1 -6.5 0.915
P-G 0.2 0.999(-0.3 0.999| 1.0 0.218| 1.5 0.13 {100 0 |12.2 O | 9.7 1E-06|10.6 2E-07|12.7 5E-06| 13.1 2E-04|17.4 0.016|20.2 0.029
VP-G 01 1 (-01 1 |10 0.162| 11 0376(7.4 0 | 9.7 6E-06| 8.8 2E-05| 9.0 2E-05|11.9 2E-05|10.4 0.005| 18.9 0.006| 19.8 0.034
VP-P -0.1 1 0.1 1 0.1 1 -0.3 0.994(-2.6 0.199(-2.5 0.759|-0.9 0.996| -1.6 0.951|-0.8 0.999| -2.7 0.937| 1.6 1 -0.4 1
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Appendix H. TukeyHSD multiple comparisons results between each tropical cyclone type by

condition for both week 1 and week 2. Table displays the differences between the means along

with the corresponding p values. Bolded text represents statistical significance at 0.05

significance level.

Crop Condition

Excellent Good Fair Poor Very Poor
Index

Week1 | Week2 | Week1l | Week2 | Week1l | Week2 | Week1l | Week2 | Week1 | Week2 | Week1 | Week2

Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val| Diff p-val | Diff p-val| Diff p-val | Diff p-val| Diff p-val | Diff p-val
TD-H1 | 1.7 0.04 | 2.7 0.002| 5.9 6E-05| 8.1 5E-05|-2.2 0.195(-3.0 0.231] -3.9 0 -4.4 5E-06(-14 0.1 |-1.7 0.016| 4.0 0 6.2 1E-07
TD-H2 | 1.1 0.747| 2.7 0.047| 5.1 0.049( 5.7 0.139|-3.3 0.143| -3.8 0.278| -0.8 0.944| -2.5 0.225|-2.0 0.079|-2.1 0.042| 3.1 0.013| 4.4 0.018
TD-H3 | -0.6 0.983| 1.7 0.603| 9.1 7E-05| 7.3 0.061|-2.2 0.704| 0.4 1 -3.5 0.007( -6.0 4E-05| -2.7 0.016| -3.3 8E-04| 4.2 9E-04| 5.8 0.003
TD-H4 | 2.4 0.288| 3.3 0.126(12.7 3E-06(15.8 2E-05| -4.5 0.149(-10.5 5E-04| -4.5 0.004| -4.6 0.048| -6.1 1E-07| -4.1 8E-04| 8.6 0 8.8 1E-04
TS-H1 | 1.4 0.152| 2.1 0.026| 5.5 1E-04( 7.1 4E-04| -2.6 0.075|-2.9 0.238| -3.5 4E-07| -3.6 2E-04| -0.8 0.607| -1.4 0.069| 3.4 4E-06| 5.1 9E-06
TS-H2 | 0.8 0.927| 2.1 0.212| 4.7 0.078| 4.7 0.312|-3.6 0.072|-3.7 0.29 |-0.4 0.998|-1.8 0.6 |-1.5 0.36|-1.8 0.118| 2.4 0.093| 3.3 0.147
TS-H3 | -1.0 0.895| 1.1 0.907| 8.7 1E-04| 6.3 0.146|-2.5 0.548( 0.5 1 |[-3.0 0.026| -5.3 4E-04| -2.2 0.101| -3.0 0.003| 3.5 0.009| 4.6 0.033
TS-H4 | 2.0 0.456( 2.7 0.314|12.4 6E-06(14.9 8E-05| -4.8 0.093(-10.4 5E-04| -4.0 0.012| -3.8 0.149| -5.6 2E-06| -3.8 0.002| 7.9 0 7.7 0.001
TS-TD |-0.3 0.963|-0.6 0.786| -0.4 0.999( -1.0 0.957|-0.3 0.996( 0.1 1 0.4 0.935| 0.7 0.781| 0.6 0.662| 0.3 0.958(-0.7 0.691|-1.1 0.588
H2-H1 | 0.6 0.987| 0.0 1 0.8 0.999( 2.4 0.94| 1.1 0.979| 0.8 0.999|-3.1 0.022( -1.9 0.691| 0.6 0.974| 0.3 0.998| 1.0 0.94 | 1.8 0.864
H3-H1 | 2.4 0.177| 1.0 0.953|-3.2 0.671| 0.8 1 -0.1 1 -3.4 0.659(-0.5 0.998| 1.7 0.84| 1.3 0.701| 1.5 0.512|-0.1 1 0.4 1
H3-H2 | 1.8 0.652| 1.0 0.974| -4.0 0.592( -1.6 0.996| -1.1 0.991| -4.2 0.561| 2.6 0.284| 3.5 0.23 | 0.7 0.987| 1.2 0.844|-1.1 0.963|-1.3 0.984
H4-H1 | -0.7 0.994| -0.6 0.998| -6.8 0.085(-7.7 0.23 | 2.3 0.857| 7.6 0.058| 0.5 0.999( 0.2 1 4.7 3E-04| 2.3 0.247|-4.5 0.012| -2.6 0.819
H4-H2 | -1.3 0.938|-0.6 0.999-7.6 0.082(-10.2 0.083| 1.2 0.994| 6.7 0.2 | 3.6 0.119| 2.1 0.878| 41 0.012| 2.0 0.531|-5.5 0.004| -4.4 0.393
H4-H3 | -3.0 0.258|-1.6 0.92 | -3.6 0.828(-8.5 0.272| 2.3 0.911|10.9 0.006| 1.0 0.986|-1.5 0.974| 3.4 0.088| 0.8 0.987|-4.4 0.058|-3.0 0.806




792  Appendix I. TukeyHSD multiple comparisons results between each condition combination by
793  precursor soil moisture and growing season timing for both week 1 and week 2. Table displays
794  the differences between the means along with the corresponding p values. Bolded text represents

795  statistical significance at 0.05 significance level.

796
Wet- early Wet- mid Wet- late
Week 1 Week 2 Week 1 Week 2 Week 1 Week 2
Diff  p-val Diff p-val Diff p-val Diff  p-val Diff p-val Diff p-val
F-E -0.6 0.997 -2.1 0.839 -0.5 0.997 -4.0 0.023 0.7 0.952 6.2 0.033
G-E -1.1 0.942 -1.8 0.915 -2.7 0.145 -3.1 0.147 -1.3 0.459 -3.2 0.628
P-E -0.1 1 -1.3 0.974 -0.4 1 -1.4 0.878 1.2 0.574 3.7 0.458
VP-E 1.8 0.694 -0.3 1 -0.6 0.995 -1.8 0.72 1.1 0.67 2.8 0.736
G-F -0.6 0.997 0.3 1 -2.2 0.359 0.9 0.983 -2.0 0.081 -9.3 1E-04
P-F 0.4 0.999 0.8 0.998 0.2 1 2.6 0.324 0.6 0.974 -2.5 0.836
VP-F 23 0.41 1.8 0.915 -0.1 1 2.2 0.511 0.5 0.99 -3.3 0.579
P-G 1.0 0.963 0.4 1 24 0.281 1.7 0.765 2.6 0.008 6.9 0.011
VP-G 2.9 0.19 1.4 0.963 2.1 0.396 1.3 0.906 2.5 0.014 6.0 0.041
VP-P 1.9 0.638 1.0 0.993 -0.2 1 -0.4 1 -0.1 1 -0.9 0.998
Dry- early Dry- mid Dry- late
Week 1 Week 2 Week 1 Week 2 Week 1 Week 2
Diff  p-val Diff p-val Diff p-val Diff  p-val Diff p-val Diff p-val
F-E -2.7 0.875 -8.9 0.133 0.6 0.997 -0.5 1 0.7 0.976 2.5 0.507
G-E 2.2 0.938 -0.9 1 0.9 0.983 1.2 0.986 -0.7 0.976 -3.3 0.193
P-E 0.1 1 0.7 1 -0.5 0.999 -1.9 0.913 1.9 0.319 2.6 0.463
VP-E -0.2 1 -4.8 0.748 -1.4 0.912 -1.6 0.958 0.7 0.97 0.6 0.999
G-F 4.9 0.338 8.0 0.221 0.3 1 1.8 0.936 -1.4 0.666 -5.7 9E-04
P-F 2.8 0.855 9.6 0.088 -1.1 0.96 -14 0.977 1.2 0.787 0.1 1
VP-F 2.4 0.91 4.1 0.847 -2.0 0.68 -1.1 0.993 0.0 1 -1.9 0.76
P-G -2.1 0.95 1.6 0.998 -1.4 0.893 -3.1 0.549 2.6 0.061 5.8 7E-04
VP-G -2.4 0.91 -3.9 0.875 -2.3 0.531 -2.8 0.658 1.4 0.643 3.8 0.077
VP-P -0.3 1 -5.4 0.632 -0.9 0.988 0.3 1 -1.2 0.807 -2.0 0.719
Near Normal- early Near Normal- mid Near Normal- late
Week 1 Week 2 Week 1 Week 2 Week 1 Week 2
Diff  p-val Diff p-val Diff p-val Diff  p-val Diff p-val Diff p-val
F-E -24 0.119 -2.2 0.164 -0.1 1 -0.6 0.958 3.4 0.001 4.5 0.004
G-E -1.2 0.773 -1.0 0.898 -1.3 0.147 -1.0 0.654 -4.7 6E-07 -4.8 0.002
P-E -0.6 0.989 -1.1 0.849 -0.8 0.693 -0.6 0.944 2.7 0.017 5.0 9E-04
VP-E -0.8 0.951 -1.1 0.858 -0.3 0.99 -0.4 0.995 2.0 0.135 3.8 0.025
G-F 11 0.834 1.2 0.768 -1.3 0.183 -0.5 0.986 -8.1 0 -9.2 0
P-F 1.8 0.407 11 0.83 -0.7 0.753 0.0 1 -0.7 0.961 0.5 0.998
VP-F 15 0.568 1.1 0.821 -0.3 0.996 0.2 1 -1.3 0.599 -0.6 0.995
P-G 0.6 0.983 -0.1 1 0.5 0.926 0.4 0.991 7.4 0 9.8 0
VP-G 0.4 0.998 -0.1 1 1.0 0.455 0.7 0.924 6.8 0 8.6 0
VP-P -0.2 1 0.0 1 0.5 0.959 0.3 0.999 -0.6 0.972 -1.2 0.938
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Appendix J. TukeyHSD multiple comparisons results between each precursor soil moisture and

timing classification combination by condition for both week 1 and week 2. Table displays the

differences between the means along with the corresponding p values. Bolded text represents

statistical significance at 0.05 significance level.

Crop Condition

Excellent Good Fair Poor Very Poor
Index

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2

Diff p-val | Diff p-val | Diff p-val | Diff p-val [ Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val | Diff p-val
Dry-Late-Dry-Early -0.6 1 -3.2 0.558| -3.5 0973| -56 0901 2.7 0968 8.1 0.208( 1.1 0.999( -1.3 0.999| 0.3 1 21 0.775(-1.6 0.988( -3.7 0.752
Dry-Mid-Dry-Early 0.0 1 -2.2 0935| -13 1 -0.1 1 3.2 0939| 6.1 0.66 | -0.7 1 -4.8 0.384| -1.2 0.996| 1.0 0.998| 0.4 1 -0.4 1
Dry-Mid-Dry-Late 0.6 0999| 1.0 0.989| 2.2 0.976| 5.5 0.454| 0.5 1 20 0989( -1.8 0.698(-34 0.171( -1.5 0.712( -1.1 0.902| 2.0 0.589| 3.3 0.322
NN-Early-Dry-Early 0.9 1 -1.7 098 | -2.6 0.997]| -1.8 1 1.2 1 50 0.816| 0.2 1 -3.5 0.736| 0.3 1 20 0812 -0.4 1 -1.4 0.999
NN-Late-Dry-Late -0.6 0.992(-1.2 0.799( -5.7 0.002| -2.7 0.881| 2.7 0.23 | 0.8 1 1.7 0.281| 1.2 0.947| 19 0.041| 2.0 0.021( -3.1 0.001| -2.6 0.226
NN-Late-NN-Early -2.1 0.045( -2.8 0.008( -6.7 2E-04| -6.6 0.013| 4.2 0.004| 39 0.16 | 2.7 0.009| 3.3 0.013| 2.0 0.046| 2.1 0.009| -4.4 6E-07| -4.9 6E-05
NN-Mid-Dry-Mid 0.4 1 0.0 1 -1.8 0.985| -2.3 0.983| -0.2 1 -0.1 1 0.2 1 1.2 0974| 15 0582 1.2 0.756( -1.0 0.981( -1.5 0.953
NN-Mid-NN-Early -0.5 0.998( -0.5 0.998| -0.6 1 -0.6 1 1.8 0.708| 1.1 0.997| -0.7 0.986| -0.1 1 0.0 1 0.2 1 -0.2 1 -0.5 1
NN-Mid-NN-Late 1.6 0.032| 2.2 0.003| 6.1 1E-06| 6.0 8E-04| -2.4 0.084| -28 0.2 | -3.4 1E-07| -3.4 7E-05| -2.0 1E-03| -2.0 3E-04| 4.2 0 4.4 4E-07
Wet-Early-Dry-Early -0.1 1 -1.7 0997 -34 0996 -2.6 1 20 0999 5.1 0.949( -0.3 1 -3.7 0903 1.9 098 | 28 0.76 | -1.8 0.997| -1.9 0.999
Wet-Early-NN-Early -1.0 0.999( 0.1 1 -0.9 1 -0.8 1 0.8 1 0.1 1 -0.5 1 -0.2 1 16 0.962| 0.8 1 -1.4 0.996| -0.5 1
Wet-Late-Dry-Late 0.2 1 -1.9 0.521| -0.5 1 -1.8 0.997( 0.2 1 1.8 099 | -05 1 -0.8 0.999| 0.6 0.997| 0.3 1 -0.2 1 -2.6 0.504
Wet-Late-NN-Late 0.8 0.974| -0.7 0.996| 5.2 0.024| 0.9 1 -2.5 0437| 10 1 -2.2 0.122| -2.0 0.618| -1.3 0.524| -1.7 0.188| 2.9 0.011| 0.0 1
Wet-Late-Wet-Early -0.3 1 -3.5 0.475| -0.6 1 -49 0.959( 0.9 1 48 0871| 1.0 1 1.5 0.998| -1.0 0.999| -0.4 1 -0.1 1 -4.4 0.568
Wet-Mid-Dry-Mid 0.8 0.997| 1.4 0.939| -29 0916 -3.0 0.973| -0.4 1 -21 0986 09 0995| 19 0901 1.6 0.738( 1.2 09 | -1.3 0.955| -1.0 0.999
Wet-Mid-NN-Mid 0.3 1 14 0661 -11 0999| -0.7 1 -0.1 1 -2.0 0916 0.8 0.986| 0.6 0.999| 0.1 1 0.0 1 -0.4 1 0.5 1
Wet-Mid-Wet-Early 0.8 1 0.8 1 -0.8 1 -0.5 1 0.9 1 -1.1 1 0.6 1 0.7 1 -1.5 0.975] -0.6 1 0.8 1 0.5 1
Wet-Mid-Wet-Late 1.2 0.919( 43 5E-04| -0.2 1 44 0.692| 0.0 1 -5.8 0.064( -0.4 1 -0.8 0.999( -0.5 0.999( -0.3 1 0.9 0.992( 5.0 0.008
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Appendix K. Regression equations from Fig. 7 for each crop and state.

Corn Cotton Peanuts Rice Sorghum Soybeans

Texas Yield, , = 46.679(X) + 6052 N/A Yield,, = 30.166(X) + 2302 N/A Yield, = 31.407(X) + 2040 Yield, =41.017(X) - 241.38
Louisiana Yield, = 77.071(X) +7223  Yield,, = 13.794(X) + 263  Vield, = 6.4803(X) +4302 Yield,, = 36.47(X) + 5476  Yield,, =47.884(X) + 3624  Yield, = 28.26(X) + 1759
Mississippi N/A Yield, , = 8.2863(X) + 713 N/A Yield, =17.8(X) + 7115 Yield,, = 25.825(X) + 4160 Yield, = 12.397(X) + 2775
Alabama Yield,, = 77.364(X) + 5364 Yield,, =7.1162(X) + 566  Yield,, = 22.794(X) + 2559 N/A N/A Yield,,, = 18.875(X) + 1622
Florida N/A N/A Yield, = 22.28(X) + 2724 N/A N/A N/A

Georgia Yield,, = 48.784(X) + 9326  Vield,, =8.6785(X) + 516  Yield,, = 36.135(X) + 2530 N/A N/A Yield,, = 23.428(X) + 1273
South Carolina Yield,, = 122.05(X) + 407  Yield , = 8.6415(X) + 442 N/A N/A N/A Yield,, = 17.05(X) + 1137
North Carolina | Yieldg, =93.772(X) + 2975  Yield, =15.017(X) +74  Yield,, =61.132(X) + 312 N/A N/A Yield, = 31.743(X) + 459
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Appendix L. TukeyHSD multiple comparisons results for both yield changes after the tropical

cyclone and yield changes at the end of the growing season by crop, month, intensity, and

precursor soil moisture classification. Table displays the differences between the means along

with the corresponding p values. Bolded text represents statistical significance at 0.05

significance level.

Crop Month Intensity
TCImpact | End of Year TC Impact | End of Year TC Impact End of Year
Crop Diff p-val | Diff p-val Month Diff p-val | Diff p-val | Intensity Diff p-val | Diff p-val
Cot-Cor -0.7 0.958| 0.1 1 May-Jun -0.2 1 0.2 1 TD-H1 4.0 3E-05| 34 0.178
Pea-Cor 0.0 1 -0.5 0.999 May-Jul -1.3 0971 -0.7 1 TD-H2 3.5 0.028| 2.4 0.858
Ric-Cor 11 0977 -04 1 May-Aug -14 0951 -3.2 0.854 TD-H3 27 029 41 0.443
Sor-Cor 0.4 1 -0.5 1 Jun-Jul -1.0 0.915| -0.9 0.995 TD-H4 7.6 6E-05| 4.7 0.601
Soy-Cor 04 0998| 1.3 0.929| Jun-Aug -1.1 0.815| -3.4 0.272 TS-TD -1.3 0.188| -2.1 0.272
Pea-Cot 0.7 0.938| -0.6 0.997 Jul-Aug -0.1 1 -2.4  0.495 TS-H1 2.7 0.015| 1.3 0.948
Ric-Cot 1.8 0.833| -0.5 1 Sep-May -1.2 097 | -04 1 TS-H2 22 0386| 0.2 1
Sor-Cot 1.0 0.926| -0.6 0.999 Sep-Jun -1.5 0.581| -0.2 1 TS-H3 14 0.887| 19 0.953
Soy-Cot 1.0 0.717| 1.2 0.929 Sep-Jul -2.5 0.019| -1.2 0.957 TS-H4 6.3 0.002| 2.5 0.955
Ric-Pea 11 0978| 0.1 1 Sep-Aug -2.6 8E-04| -3.6 0.016 H2-H1 05 0999| 1.1 0.997
Sor-Pea 03 1 0.0 1 Sep-Oct 0.4 0.997| -0.2 1 H3-H1 1.2 0952 -0.6 1
Soy-Pea 0.3 0.998| 1.8 0.727| Oct-May -1.7 0927 -0.2 1 H3-H2 0.8 0.997| -1.7 0.991
Sor-Ric -0.8 0.997| -0.1 1 Oct-Jun -1.9 0.572| 0.0 1 H4-H1 -3.6 0.287| -1.2 0.999
Soy-Ric -0.8 0.995| 1.7 0.986 Oct-Jul -2.9 0.072| -1.0 0.996 H4-H2 -41 0.262| -2.3 0.985
Soy-Sor 0.0 1 1.8 0.918| Oct-Aug -3.0 0.024| -3.4 0.348 H4-H3 -4.9 0.144]| -0.6 1
Wet Soil Near Normal Soil Dry Soil
TC Impact | End of Year TC Impact | End of Year TC Impact | End of Year
Timing Diff p-val | Diff p-val Timing Diff p-val | Diff p-val Timing Diff p-val | Diff p-val
Late-Early | 0.4 0.982| 4.1 0.434| Llate-Early | -1.7 0.189| -1.7 0.474| Llate-Early | -3.0 0.27 | -1.1 0.97
Mid-Early 2.5 0549 2.4 0.754| Mid-Early 1.4 0.299| 2.5 0.153| Mid-Early | -1.1 0.85 | 53 0.59
Mid-Late 21 0.219]| -1.7 0.572| Mid-Late 3.1 O9E-05| 42 3E-04| Mid-Late 19 029 | 64 0.11
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