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ABSTRACT 9 

Weather causes both positive and negative impacts to agriculture making it the most 10 

uncontrollable factor affecting crop production. Agriculture in the southern U.S. comprises over 11 

40% of the annual commodity export from the U.S., and this region also experiences a relatively 12 

large frequency of tropical cyclones. Few previous studies have investigated the effects tropical 13 

cyclones have on agriculture; thus, this study quantified the role tropical cyclones have on crop 14 

quality and yield in the Coastal Southern U.S. region using United States Department of 15 

Agriculture National Agricultural Statistics Service crop condition data (May–October; 1986–16 

2021). The greatest changes in condition ratings were observed in fields that were favorable for 17 

normal and above normal yield potential, which were downgraded to a less than normal 18 

condition more favorable for some extent of loss to yield. For crops considered in excellent or 19 

good condition, decreases in coverage were up to 5% which resulted in an increase in fair, poor,20 
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or very poor conditions (up to 3% on average). When aggregating all crops in this study (corn, 21 

cotton, peanuts, rice, sorghum, soybean), the latter portion of the growing season was the most 22 

detrimental to conditions after tropical cyclone impact, even under drought conditions. The 23 

strongest correlation found was between crop condition declines and tropical cyclone intensity, 24 

as major hurricanes were more likely to cause crop loss than any other variable. Consequently, 25 

yield prospects decline after a tropical cyclone based on declines in coverage of excellent and 26 

good conditions (yield declines up to 6% on average); though, crop conditions tend to recover 27 

resulting in yield to also recover marginally by the end of the season (declines up to 3%). 28 

Overall, these results provide essential risk management information for producers and could be 29 

used to better inform resilience and sustainability decisions related to tropical cyclone impacts. 30 
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1. INTRODUCTION 33 

Agriculture is one of the most sensitive economic sectors to weather and climate due to 34 

its direct and uncontrollable impact on crop production (Andresen et al., 2001; Knox et al., 35 

2014). In particular, the South U.S. region has an especially important agricultural sector 36 

producing many high valued crops such as citrus, vegetables, and several field crops including 37 

soybean, hay, corn, wheat, cotton, peanuts, sorghum, and more (Hatch et al., 1999). Agriculture 38 

in the South is a significant source of commerce, with over $55 billion USD in commodity 39 

production annually accounting for nearly 17% of total U.S. production (Asseng, 2013). In order 40 

to maximize commodity production, continuous monitoring of crops throughout the growing 41 

season provides valuable insight into crop quality, health, and productivity that stakeholders use 42 

to make real-time decisions (Khaki et al., 2021).  43 

Unique to the Coastal South when compared to other agricultural belts in the U.S.—and 44 

something to be considered by stakeholders—is increased exposure to tropical cyclones (TCs). 45 

TCs are among the most destructive natural hazards on the planet (Kunze, 2021) and can cause 46 

irreparable damage to agriculture in the form of destruction to vegetation, damage to irrigation 47 

facilities, and long-term loss of soil fertility (Xu et al., 2005). Perils associated with a single TC 48 

event, such as the flooding, can destroy an entire season’s yield (Knox et al., 2014). Recently, the 49 

USDA starting issuing hurricane-specific crop insurance and has expanded to cover all tropical 50 

cyclones to provide as a financial safety net against crop losses (USDA, 2020). In terms of 51 

damage, Tropical Storm Fay in August 2008 resulted in over $250M USD in losses to agriculture 52 

in northern Florida and southern Georgia, in part because 70% of the expected production value 53 

was lost for vegetable crops (Flanders et al., 2008). On the extreme end, Hurricane Katrina in 54 

August 2005 caused sugar cane, corn, soybean, and cotton production losses totaling 55 



 

approximately $1B USD (Schnepf and Chite, 2005). Other literature has investigated the 56 

detrimental effects TCs have had on agricultural sectors across the globe, including China (Xu et 57 

al., 2005), Bangladesh (Hossain et al., 2008), Central America (Boucher et al., 2001), and the 58 

Caribbean Islands (Bertinelli et al., 2016), as well as TC impact based on land use and 59 

topographic features (Philpott et al., 2008) and the effects on agriculture from an economic 60 

standpoint under a changing climate (Chen and McCarl, 2009). In terms of a changing climate, 61 

increasing TC frequency and intensity has been debated considerably within the context of 62 

global climate change and natural variability (Emanuel, 2005; Webster et al., 2005; Landsea et 63 

al., 2006; Shepherd and Knutson, 2007, Kossin et al., 2010; Knutson et al., 2010; Seneviratne et 64 

al., 2012; Villarini et al., 2012; Weinkle et al., 2012; Knutson et al., 2013), which emphasizes the 65 

importance of investigating tropical cyclone impacts in the Coastal Southern U.S. Despite this 66 

debate, TC impacts from heavy rain and damaging winds are costly and have a varying response 67 

depending on the agroecosystem and its vulnerability (Perotto-Baldiviezo et al., 2004; Philpott et 68 

al., 2008). Therefore, if tropical cyclone frequency and/or intensity continues to increase in the 69 

future (Emanuel, 2007; Bender et al. 2010; Bell et al., 2011; Tron and Snyder, 2012; Landsea 70 

and Franklin, 2013), the implications to agriculture in the Coastal Southern U.S. will amplify. 71 

Heavy rain from TCs can lead to inundated fields resulting in disease and root rotting as 72 

daily rainfall amounts from TCs average between 150–350mm across all aggregated cyclone 73 

strength classifications (Cerveny and Newman, 2000). Heavy rainfall effects to agricultural 74 

fields also holds true for non-TC excess precipitation events (Knox et al., 2014; Bundy et al., 75 

2022). In general, flooding associated with landfalling TCs has claimed a large economic and 76 

societal toll with several billion dollars in damage annually to the U.S. (e.g., Rappaport, 2000; 77 

Pielke et al., 2008; Changnon, 2008; Mendelsohn et al., 2012; Peduzzi et al., 2012). Despite 78 



 

these repercussions, there is limited published literature about the inland flooding from TCs 79 

when compared to improving the understanding of damage caused by storm surge and wind 80 

(e.g., Elsberry, 2002; U.S. Department of Commerce, 2011; Zandbergen, 2009; Villarini et al., 81 

2014). This is especially true when it comes to TC-induced rainfall impacts on crop quality. 82 

Flooded land also impacts soil structure (Kopyra and Gwo d, 2004; Pengthamkeerati et al., 2006; 83 

Haddad et al., 2013; Kraur et al., 2019) and if there is little soil integrity or strength, then crops 84 

are more susceptible to being damaged by wind (Cleugh et al., 1998). In general, excessive 85 

winds from TCs pose a threat for greensnap or root lodging, resulting in downed fields, a 86 

reduction in crop quality, and ultimately a loss in production (Cleugh et al., 1998; Lindsey et al., 87 

2021). Even with these TC perils, previous literature (e.g., Rodgers et al., 2001; Knight and 88 

Davis, 2007) has noted that the contribution of TC-induced rainfall has been overlooked, as 89 

rainfall from TCs can be essential for the success of the agricultural enterprise in the Coastal 90 

South U.S. region. TC-induced rainfall comprises between 5–15% of the growing season rainfall 91 

total for much of the region (Knight and Davis, 2007). In addition, if all TC-induced rainfall was 92 

removed in a given season, soil moisture deficits in the Southern U.S. would increase by 93 

approximately 20–30%, on average (Knight and Davis, 2007). The timing of TC rainfall is likely 94 

an important contributor to whether it would benefit a crop, and there is a risk versus reward 95 

factor when it comes to beneficial TC rainfall versus potential wind damage. Neither of these are 96 

well understood and would benefit from a quantitative analysis.  97 

A widely used methodology to perform continuous monitoring of crops is through the 98 

United States Department of Agriculture (USDA) National Agricultural Statistics Service 99 

(NASS) Crop Progress report. The report is crucial for speculators in agriculture future markets 100 

(Bain and Fortenbery, 2013; Lehecka, 2014). Crop Progress reports released by the USDA 101 



 

NASS have been argued to capture the complexities of assessing the “status” of a crop better 102 

than any model or remote sensing retrieval (Begueria and Maneta, 2020) and have had 103 

statistically significant correlations with weather/climate variables and yield (Bundy and 104 

Gensini, 2022). Therefore, with existing discrepancies in previous literature regarding whether 105 

TCs are overall beneficial, detrimental, or perhaps both to agriculture, this study aimed to 106 

quantify historical TC impacts on crop quality and yield in the Coastal South U.S. region. In 107 

particular, the goals of this study were to 1) quantify the impacts TCs have had on conditions 108 

across multiple field crops, 2) quantify the intermonthly impacts TCs may have had on crop 109 

conditions, 3) characterize how TC intensity and precursor soil moisture impacted crop 110 

conditions, and 4) quantify historical yield changes based on the crop conditions. A 111 

comprehensive overview of crop quality and yield impacts by TCs using USDA NASS data has 112 

not been performed to date. The novel results herein can be used by farmers, insurers, 113 

agronomists, and other stakeholders to aid in the decision-making process regarding management 114 

and resilience when it comes to TC impacts on regional agriculture. 115 

 116 

2. MATERIAL AND METHODS 117 

2.1. Crop condition data 118 

Weekly USDA NASS Crop Progress crop condition data were obtained from May– 119 

October, 1986–2021, for eight states we define as the Coastal South U.S.: Texas, Louisiana, 120 

Mississippi, Alabama, Georgia, Florida, South Carolina, and North Carolina (USDA, 2022). 121 

General crop condition data includes corn, cotton, peanuts, rice, sorghum, and soybean as they 122 

are the most widespread in terms of yield (Fig. 1), production (Appendix A), and acreage 123 



 

(Appendix B) within this region. Condition data varied temporally by crop and by state—not all 124 

states had the same number of years of data for each crop examined. 125 

 126 

Fig. 1. Average annual yield (kg ha-1 in thousands) at county-level for each crop examined in the 127 

Coastal Southern U.S. region (1986–2021). Locations within the study area without a county 128 

outline did not have any production for the respective crop. (Color not needed for print) 129 

 130 

For example, corn condition data for Texas are available from 1986–present, though for 131 

Louisiana, Alabama, and Georgia, corn condition data only date back to 2007. Cotton, soybean, 132 



 

sorghum, and rice data were available for all states from 1986–present, whereas peanut data were 133 

only available dating back to 1996. It is important to emphasize that a consistent sample size by 134 

state and/or crop was not necessarily important for this study, as attaining the greatest number of 135 

TC impact cases possible for examination was prioritized. 136 

Weekly data collected by the USDA within each county are summarized and weighted by 137 

acreage to inform state-level data. Thus, public data via the USDA NASS are available only at 138 

state-level aggregation. Crop condition data are not released at the county level in part to protect 139 

the confidentiality of growers whose operations may comprise much of the production in a given 140 

county (USDA, 2021). These data are gathered via a weekly survey by reporters consisting of 141 

largely extension agents and Farm Service Agency staff (USDA, 2016). Approximately 3,600 142 

respondents are asked to report for the entire week ending on Sunday, regardless if they submit 143 

their report on Friday, Saturday, or Sunday (USDA, 2021). For reports submitted prior to the 144 

Sunday reference date, a degree of uncertainty is introduced by projections for weekend changes 145 

in progress and condition. By the end of the 2020 season, over 95% of the data were being 146 

submitted through an online portal. As a result, most reports were submitted on Monday 147 

morning, significantly reducing projection uncertainty (USDA, 2021). For the general crop 148 

conditions portion of the report, reporters are asked to estimate the percent of their crop in 149 

excellent, good, fair, poor, and very poor condition. General crop condition categories defined by 150 

the USDA are as follows:  151 

• Excellent - Yield prospects are above normal. Crops are experiencing little or no stress. 152 

Disease, insect damage, and weed pressures are insignificant. 153 

• Good - Yield prospects are normal. Moisture levels are adequate and disease, insect 154 

damage, and weed pressures are minor. 155 



 

• Fair - Less than normal crop condition. Yield loss is a possibility, but the extent is 156 

unknown. 157 

• Poor - Heavy degree of loss to yield potential which can be caused by excess soil 158 

moisture, drought, disease, etc. 159 

• Very Poor - Extreme degree of loss to yield potential, complete or near crop failure. 160 

The Crop Condition Index (CCI) was calculated for each report through the following equation 161 

(Bain and Fortenbery, 2013, 2017):  162 

CCI = %Excellent (1.0) + %Good (0.75) + %Fair (0.50) +%Poor (0.25) + %Very Poor (0) 163 

This weighted index provides a value summarizing the current state of weekly conditions from 164 

the five crop conditions. The index ranges from [0, 100], with an index value of 100 165 

corresponding to 100% of the surveyed crop being reported in excellent condition (Bain and 166 

Fortenbery, 2013, 2016). The 0 weight on the very poor condition percentage is used to eliminate 167 

the effect abandoned acres has if used for a yield forecast (Fackler and Norwood, 1999; 168 

Jorgensen and Diersen, 2014). We note there are other ways one might use the crop condition 169 

information provided by the USDA. For example, the USDA use their own weighted index, 170 

ranging from [1, 5] that combines all conditions together (similar to the Bain and Fortenbery 171 

(2013) approach) where an index of 1 corresponds to 100% of the crop being in very poor 172 

condition while an index of 5 corresponds to 100% of the crop being in excellent condition 173 

(Rosales, 2021). Other approaches include adding the percent of crop rated excellent and percent 174 

rated good and use that index to model corn and soybean yields (Irwin and Good, 2017a, 2017b; 175 

Irwin and Hubbs, 2018). However, Bain and Fortenbery (2016) argue that only using the good 176 

and excellent rating information is a disadvantage since responses from changes in the bottom 177 

three categories (fair, poor, very poor) are not considered. Also, the Bain and Fortenbery (2016) 178 



 

CCI has been proven to represent the overall crop condition and use as an explanatory variable in 179 

modeling crop yields and production (Fackler and Norwood, 1999; Jorgensen, 2014; Jorgensen 180 

and Diersen, 2014; Bundy and Gensini, 2022). 181 

2.2. Crop yield data 182 

 Crop yield data were also obtained from the USDA NASS from 1986–2021 for each 183 

Coastal South state for each crop examined (USDA, 2022). A linear trend adjustment was 184 

computed for each state for each growing season to eliminate the long-term trends of yield 185 

within each state. The linear trend was calculated dating back to when the crop condition data 186 

were first available for each state and crop in order to keep the comparison between conditions 187 

and yield consistent. The trend was computed by calculating the least-squares regression slope 188 

between the yield and the year index. Least-squares regression was used across all crops and 189 

states since each trend was approximately linear. This slope value was used to then detrend the 190 

yield data for each state and crop. The equation (Equ 1) used to detrend the yield for each crop 191 

and state is as follows (Irwin and Good, 2017a; Bundy and Gensini, 2022): 192 

                                           Yieldadj = Yieldt + [β1 (�� − ��)]                                                      1 193 

where Yieldt is the observed yield for year t. β1 is the rate of change in the data, �� is the total 194 

number of years used, and �� is the year index. Yield for crops was collected from the USDA 195 

NASS database as follows: cotton in lb ∙ ac-1, corn in bu ∙ ac-1, peanuts in lb ∙ ac-1, rice in lb ∙ ac-1, 196 

sorghum in bu ∙ ac-1, and soybean in bu ∙ ac-1. These units were converted to kg ∙ ha-1 to keep 197 

yield units consistent across the analysis. While the use of the USDA NASS database has proven 198 

reliable in a peer-reviewed research setting (e.g., Bundy and Gensini, 2022), there are 199 

shortcomings of the database worth noting. First, between the use of the crop conditions and 200 

yield, the statistics may be impacted by the growth stage of the crop. Hence, more crop 201 



 

deterioration/yield loss may occur to crops that are further along in their growing cycles in more 202 

southern location than further north within a state. With this, the data at state-level aggregation is 203 

a limitation. Second, these statistics do not account for the practice of double-cropping which 204 

may impact the timing of the planting date, growth cycle, and in turn, the variability in crop 205 

conditions and yield. Finally, the comparison between crop conditions and yield in the USDA 206 

NASS database cannot account for irrigation. In other words, these data are not separated by 207 

rainfed and irrigated crops which may also impact variability in the results.  208 

2.3. Tropical cyclone data  209 

TC data were compiled from the National Oceanic and Atmospheric Administration 210 

(NOAA) Historical Hurricane Tracks database from May–October, 1986–2021 (NOAA, 2021). 211 

Tropical depressions (TD), tropical storms (TS), and Category 1 (H1), 2 (H2), 3 (H3), and 4 (H4) 212 

hurricanes were obtained for this analysis. No Category 5 hurricanes impacted crop area during 213 

the 1986–2021 study period. It is important to note that there were Category 5 hurricanes that 214 

made landfall during the study period, and there were some cases where hurricanes were 215 

upgraded to a Category 5 hurricane after the storm. These two examples include Hurricane 216 

Andrew and Michael as they were not initially considered Category 5 hurricanes at landfall 217 

(Landsea et al, 2004; NOAA, 2019). Nonetheless, these two storms were not Category 5 218 

hurricanes once they went over cropland. The specific number of cases for each state, crop, and 219 

type of TC impacting each state were sorted (Table 1). TCs were classified based on their 220 

maximum intensity when affecting the respective crop area in any state in the study domain. The 221 

cyclone center of circulation (Fig. 2) needed to cross over at least one county with crop 222 

production (Fig. 1) to be counted as “impacting crop area” for this analysis. 223 

 224 



 

Table 1. Report totals for each Coastal Southern U.S. state divided by crop type and tropical 225 

cyclone intensity (1986–2021). 226 

  Totals by Crop Type Totals by Tropical Cyclone Intensity 
State Corn Cotton Peanuts Rice Sorghum Soybean Total TD TS H1 H2 H3 H4 Total 
Texas 25 25 3 16 24 4 97 4 14 6 2 2 1 29

Louisiana 1 9 15 9 16 50 6 4 5 1 1 17

Mississippi 3 15 3 3 3 15 42 10 5 1 16

Alabama 5 35 24 17 81 20 7 4 1 2 1 35

Florida  6 28 34 10 24 3 1 3 1 42

Georgia 11 30 21 16 78 15 16 1 32

South Carolina 5 20 11 12 48 11 9 3 1 24

North Carolina 30 23 22 29 104 9 13 4 3 2 31

Total 80 163 112 34 36 109 534 85 92 27 7 10 5 226

 227 

 228 

Fig. 2. Kernel density of all tropical cyclone center tracks used in this study (1986–2021). 229 

Cropland represented by outlined counties with darker outlines representing higher production. 230 

(Color not needed for print) 231 

 232 

2.4. Soil moisture data 233 

Palmer Modified Drought Index (PMDI) data were used as a measurement of soil 234 

moisture (NWS, 2011). The PMDI attempts to measure the duration and intensity of long-term 235 



 

drought-inducing circulation patterns and is the operational version of the Palmer Drought 236 

Severity Index (PDSI). Long-term drought is cumulative, so the intensity of drought during the 237 

current month is dependent on the current weather patterns plus the cumulative patterns of 238 

previous weeks, but the PMDI can respond fairly rapidly even if it cannot totally capture the 239 

instance of flash droughts (Palmer, 1965; NCEI, 2021). Therefore, PMDI values were collected 240 

for each report for the week prior to a TC impacting the cropping area (week 0). PMDI values 241 

greater than or equal to 2.0 represented “wet” conditions in this research, values less than or 242 

equal to -2.0 represented “dry” conditions, and values between -1.99 and 1.99 represented near 243 

normal conditions (Palmer, 1965). These data are available at the climate division level (NOAA, 244 

2022), thus, PMDI data were gathered only for the divisions that were impacted by the 245 

circulation center of the TC represented in Fig. 2 and if there was crop production in that 246 

division at the time of the TC. These data were then averaged for each state to inform the 247 

precursor PMDI value/classification for each TC case. In addition, the soil moisture analysis was 248 

separated into different portions of the growing season: May and June represented the early 249 

portion of the growing season, July and August represented the middle portion, and September 250 

and October represented the late portion. 251 

2.5. Analysis  252 

Crop condition data were gathered for the week before TC impact (week 0), the week of 253 

the TC impact (week 1), and the week after the TC impact (week 2). Week 1 and week 2 254 

represent the impacts TCs may have on crops. These two weeks were collected as extension 255 

agents conducting the crop condition survey may see more of the possible slower developing 256 

impacts from the TC in week 2, or perhaps, more recovery. Also, it is possible that week 2 may 257 

be the only time to adequately assess the crop in severe cases where more direct results of the TC 258 



 

may have needed to be dealt with first during week 1 or immediately after the TC. All in all, 259 

assessing the week of the TC impact and week after will likely represent most of the effects TCs 260 

bring upon crops while limiting the potential weather effects after the TC. The percent change 261 

for each condition category (excellent, good, fair, poor, very poor) was calculated between week 262 

1 and week 2 from week 0. The weekly change value amongst the crop condition categories 263 

represents one report. A single TC can have multiple reports depending on the intensity changes, 264 

and how many states/crops it impacts. For example, Dennis in July 2005 has six different reports 265 

as outlined below:  266 

• Category 3 Hurricane Dennis affected 1) Florida peanuts. 267 

• Downgraded to a tropical storm and affected 2) Alabama cotton and 3) Alabama peanuts. 268 

• Further downgraded to a tropical depression and affected 4) Mississippi cotton, 5) 269 

Mississippi rice, and 6) Mississippi soybean.  270 

In total, there were 534 reports each for week 1 and week 2, making the entire dataset consist of 271 

1068 reports. To examine changes, or differences between crop condition movements, a 272 

combination of three assessments were made. This includes 1) computing how many 273 

reports/cases resulted in a decrease or increase in excellent, good, fair, poor, very poor condition, 274 

and then ultimately the CCI, 2) visually assessing the interquartile distribution of the box and 275 

whisker plots for each condition, and 3) computing the statistical differences between the 276 

averages in each condition change. To determine this third step, the Tukey HSD (“honestly 277 

significant difference”) multiple comparison test was computed at the 95% confidence level. 278 

Tukey HSD determines if the relationship between two sets of data is statistically significant in 279 

terms of their difference in means (Ott and Longnecker, 2015). The TukeyHSD test results are 280 

presented in the Appendices section. 281 



 

 For yield assessment, week 1 and week 2 CCI was averaged and used within each 282 

state/crop’s unique least squares regression equation to model weekly crop yield. The least 283 

squares regression equation was computed based on the annual average CCI which has been 284 

proven to be a useful metric when quantifying crop yield throughout the growing season (Bundy 285 

and Gensini, 2022). The model equation for this portion of the analysis is specified below (Equ 286 

2): 287 

                                                            YieldEst = ��
� · X + ��

�                                                           2 288 

where ��
� is the least squares regression slope, X is the current week’s CCI, and  ��

� is the Y-289 

intercept of the regression equation. If the coefficient of determination was not statistically 290 

significant to the 95% confidence level, then those yield data for the respective state and crop 291 

were not used. States and crops not used in the yield analysis included Texas cotton, Texas rice, 292 

Mississippi corn, Mississippi rice, Mississippi peanuts, Florida cotton, and South Carolina 293 

Peanuts, which consists of 13% of the reports (67 of 534). Yield was modeled based on the CCI 294 

for week 0 and the average of week 1 and week 2 CCI to determine the yield change percentage. 295 

Yield change percentages were also calculated between week 0 and the actual end of year yield. 296 

 297 

3. RESULTS 298 

3.1. Condition changes by crop  299 

The largest movements in week 1 and 2 coverage changes were reflected in crops 300 

considered in good and fair condition (Fig. 3). This is in large part due to crops considered in 301 

good condition represented nearly half the total crop area across the Coastal Southern U.S., while 302 

conditions considered fair represented 30% of the total crop area on average since 1986 (USDA, 303 

2022). Thus, with over 3/4 of a given crop area for each state in good or fair condition, it is more 304 



 

likely for these conditions to have some of the most notable weekly changes after any weather 305 

hazard impact. For most crops after TC impact in weeks 1 and 2, the decrease on average for 306 

excellent and good conditions resulted in an increase in fair conditions, and to a lesser extent, an 307 

increase in poor and very poor conditions. This is supported by a Pearson correlation coefficient 308 

average between excellent versus CCI and good versus CCI of 0.63, and an average Pearson 309 

correlation coefficient between fair versus CCI, poor versus CCI, and very poor versus CCI of -310 

0.56. Both correlations are considered large in terms of the strength of the relationship (Cohen, 311 

1988). In other words, crops that were considered optimal for normal or above normal yield 312 

potential (excellent or good conditions) were downgraded to a condition where yield loss is a 313 

possibility (fair conditions) or downgraded to a condition more conducive of a heavier degree of 314 

loss to yield potential (poor or very poor). Consequently, this resulted in a marginal decrease in 315 

the CCI up to 4% on average for all crops in week 1 and week 2. For corn, cotton, peanuts, rice, 316 

and soybeans, the average decrease good conditions for weeks 1 and 2 were consistent between 317 

3–5% (Figs. 3a, 3b, 3c, 3d, 3f). For these crops that were in fair or poor condition, averages 318 

were somewhat variable from crop-to-crop, with resulting increases up to 3%. Differences in 319 

averages between changes in good and fair conditions were statistically significant at the 95% 320 

confidence level for cotton, rice, and soybeans (Appendix C). Between good and poor or very 321 

poor conditions, the differences in average changes were statistically significant for all crops 322 

except corn and sorghum (Appendix C). Sorghum was the only crop to not follow the general 323 

decreasing good condition and increasing fair and poor condition (Fig. 3e). Conditions for 324 

sorghum were generally unchanged until week 2 when good condition coverage increased and 325 

fair condition coverage decreased on average. The distribution for both weeks, though, favored 326 

an increase in good conditions and a decrease in fair conditions.  327 



 

 328 

Fig. 3. Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from 329 

week 0 for each condition after a tropical cyclone impacted the respective crop area. Each box 330 

and whisker present a six number summary: whiskers represent the 1.5 multiple of the inner-331 

quartile range (outliers considered but not included in plots); boxes represent first quartile (25th 332 

percentile) and third quartile (75th percentile) values; black line horizontal within boxes 333 

represent the median value; white squares represent the mean value. (Color not needed for print) 334 

 335 

For these crops that were in fair or poor condition, averages were somewhat variable from crop-336 

to-crop, with resulting increases up to 3%. Differences in averages between changes in good and 337 

fair conditions were statistically significant at the 95% confidence level for cotton, rice, and All 338 

crops analyzed in this research displayed a decrease in the CCI on average and did not have 339 



 

statistically significant differences between condition changes when comparing each crop and 340 

condition combination (Appendix D), which suggests a generally homogenous reaction amongst 341 

crops to TC impact even with the differences in sample size (Table 1). Therefore, the similar 342 

CCI changes to TC impacts justifies aggregating all crops in this research together for analysis in 343 

the following sections.  344 

While the average changes in crop conditions do display statistical differences amongst 345 

the different condition categories, the entire distribution of the box and whiskers need to be 346 

discussed as there is a considerable amount of variability in terms of weekly changes. Hence, the 347 

result of a TC impact on crop conditions did not always result in detrimental changes. In fact, 348 

only half of the cases overall resulted in a decrease in the CCI. As a whole, weekly changes in 349 

good conditions possessed a standard deviation of nearly 10%, while fair was 8% and the 350 

remaining conditions (excellent, poor, very poor) ranged between 3–5%. This suggests that other 351 

factors (e.g., time of season, TC strength, precursor soil moisture) may contribute significantly to 352 

variability across all crops. 353 

3.2. Condition changes by month 354 

 Based on the timing of a TC with respect to the phenological stage of the crop, examining 355 

condition changes by month revealed essential information regarding the timing risk of TC 356 

impacts on agriculture (Fig. 4). When aggregating all crops examined in this study together, the 357 

month of May showed only marginal evidence of an improvement in conditions (Fig. 4a). This is 358 

supported by a decrease in good and fair conditions while there was a subtle increase in 359 

excellent, poor, and very poor conditions; overall these subtle changes did not lead to any net 360 

change in the CCI on average. However, the median change and overall interquartile distribution 361 

does favor marginal improvement. In addition, 68% of the cases resulted in an increase in the 362 



 

CCI during May. TCs resulted in subtle improvements in crop conditions overall in June and 363 

July as well (Figs. 4b, 4c). This is reflected in the CCI changes in week 1 and week 2, which 364 

increased up to 2% on average. Notably, conditions considered fair were upgraded to good or 365 

excellent in June and July as the differences in averages for good/excellent conditions were 366 

statistically different than fair and poor conditions (Appendix E).  367 

 368 

Fig. 4. Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from 369 

week 0 for each condition after tropical cyclone impact separated by month. Each box and 370 

whisker present the same six number summary as described in Fig. 3. (Color not needed for 371 

print) 372 

 373 



 

For both months, 60% of the cases resulted in an improvement in crop conditions. For August, 374 

CCI was practically unchanged in week 1 and week 2 with no statistically significant differences 375 

between condition averages. Also, nearly half of the cases resulted in an increase or decrease in 376 

crop conditions, and thus, there was not strong evidence to support any major change in crop 377 

conditions due to TC impact in August. 378 

August served as somewhat of a transition period for change in crop conditions. In the 379 

latter portion of the growing season, September and October displayed the largest movements in 380 

crop conditions, suggesting these two months are the most important for crop conditions when it 381 

comes to TC impact (Figs. 4e, 4f). This is especially true in the good and fair condition 382 

movements as, on average, weeks 1 and 2 good conditions decreased by nearly 5% while fair 383 

conditions increased by 1–3%. In addition, excellent conditions decreased on average by up to 384 

3% while poor and very poor conditions increased between 2–4% on average for both week 1 385 

and week 2 changes. The changes in excellent and good conditions for week 1 and week 2 within 386 

September and October were statistically significantly different than the changes in fair, poor, 387 

and very poor conditions with 95% confidence (Appendix E). When comparing September and 388 

October with May, June, July, and August, statistically significant differences across condition 389 

changes were observed (Appendix F). The result for both months was a decrease in the CCI by 390 

3–4%, which was the strongest crop condition change signal for the growing season. This is also 391 

supported by both interquartile ranges for these months being at or below 0 for the CCI with 392 

nearly 66% of cases resulting in a decline in crop conditions. 393 

 Even when aggregated by month, there was still a respectable amount of variability. Still, 394 

monthly aggregation was a statistically significant predictor of crop condition changes after TC 395 



 

impact, suggesting crop phenology is important when assessing the specifics of TC impacts on 396 

field crops in the Coastal South.  397 

3.3. Condition changes by tropical cyclone intensity 398 

 In addition to growing season timing, TC intensity also plays a significant role in crop 399 

condition changes. Overall, the strength of a TC was the most statistically significant predictor of 400 

crop condition changes when including all variables. When all crops are aggregated together, 401 

tropical depressions and tropical storms did not tend to impact average conditions (Figs. 5a, 5b). 402 

Furthermore, the average CCI had nearly 0% change in both weeks 1 and 2, and there were no 403 

statistically significant differences between the averages of condition changes (Appendix G).  404 

Once TCs reached hurricane status, noteworthy changes in conditions were observed as 405 

statistically significant changes between excellent/good and fair/poor/very poor were observed 406 

(Appendix G). For category 1 and category 2 hurricanes, crops rated in good condition decreased 407 

in week 1 and week 2 between 5–8%, which consequently resulted in an increase in fair, poor, 408 

and very poor condition coverage ranging between 1–4% on average (Figs. 5c, 5d). The 409 

interquartile distributions of the box and whisker plots for both category 1 and 2 hurricanes were 410 

near or below 0% change in excellent and good conditions. Meanwhile, the interquartile 411 

distribution for poor and very poor conditions were near or above 0% change. As a result, the 412 

CCI interquartile distribution was at or below 0%. Nearly 66% of all cases resulted in a decrease 413 

in crop conditions after category 1 or 2 hurricane impact. When hurricanes reached “major 414 

hurricane” status at category 3 or higher, the resulting detrimental crop condition changes were 415 

more substantial (Figs. 5e, 5f).  416 



 

 417 

Fig 5. Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from 418 

week 0 for each condition after tropical cyclone impact separated by tropical cyclone strength. 419 

Each box and whisker present the same six number summary as described in Fig. 3. (Color not 420 

needed for print) 421 

 422 

As is the general trend with the other results, a general decrease in excellent and good conditions 423 

resulted in an increase in fair, poor, and very poor conditions for category 3 and category 4 424 

hurricane impacts. For category 3 hurricanes, the decrease in good conditions in week 1 neared 425 

10%. This decrease was even higher for category 4 hurricanes (13%). As a result, the CCI 426 

decrease after being impacted by category 3 or category 4 hurricanes was near 5% and 9% 427 



 

respectively for both week 1 and week 2. In total, 70% of the cases for category 3 hurricane 428 

impact resulted in a decline in crop conditions while 83% of the category 4 hurricane cases 429 

resulted in a decline. The interquartile distribution for category 3 and 4 hurricanes was also 430 

similar to category 1 and 2 impact, which further emphasizes the significant relationship between 431 

TC strength and crop condition changes. Also, when comparing the changes for each condition 432 

with each TC strength combination, statistically significant differences were noted when 433 

comparing the condition changes for hurricanes against tropical storms and depressions 434 

(Appendix H). 435 

3.4. Condition changes under precursor soil moisture conditions 436 

 Soil moisture conditions prior to TC impact along with the time of the growing season 437 

also plays a vital role in whether crops may benefit from TCs. For instance, during certain 438 

phenological stages of crop development, depending on the status of the crop (e.g., dry, wet), 439 

TCs may yield positive or negative impacts on crop conditions (Fig. 6). Precursor (week before 440 

TC impact) PMDI conditions were also a statistically significant predictor of crop condition 441 

changes. Under precursor PMDI conditions considered wet (PMDI ≥ 2.0), on average, crop 442 

conditions did not improve in any part of the growing season (Figs. 6a, 6b, 6c). In the early 443 

portion of the growing season (May and June), TCs negatively impacted crop conditions when 444 

precursor PMDI conditions were wet (Fig. 6a). Thus, fields that were at least already at least 445 

moderately moist and became saturated after a TC did not typically improve the quality of the 446 

crop. This is supported by the statistically insignificant differences between excellent and good 447 

conditions compared to fair, poor, and very poor conditions to the 95% confidence level 448 

(Appendix I). During the middle portion of the growing season, there was no statistical support 449 

to suggest TCs improve or deteriorate crop conditions, on average (Fig. 6b; Appendix I).  450 



 

 451 

Fig. 6. Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from 452 

week 0 for each condition after tropical cyclone impact separated precursor soil moisture 453 

condition and seasonal timing. Each box and whisker present the same six number summary as 454 

described in Fig. 3. (Color not needed for print) 455 

 456 

Therefore, if precursor soil moisture conditions were already optimal during the critical 457 

reproduction period of the growing season, conditions remained stable after a TC impact. 458 



 

By the latter portion of the growing season under wet precursor conditions, crops under excellent 459 

or good conditions decreased in coverage resulting in an increase in coverage of crops in fair, 460 

poor, or very poor condition on average (Fig. 6c). This was supported by the statistically 461 

significant differences between excellent (more so in week 2) and good conditions compared to 462 

fair, poor, and very poor conditions (Appendix I). As a result, the decline in favorable conditions 463 

resulted in a decrease in the CCI for both week 1 and week 2 on average by 2–4%. 464 

 Under dry precursor soil moisture conditions, or conditions that are at least considered in 465 

a moderate drought (PMDI ≤ -2.0), TCs did benefit crop conditions overall in the early and 466 

middle portions of the growing season (Figs. 6d, 6e). This was reflected by subtle differences 467 

between excellent with good conditions as compared to fair conditions in the early portion of the 468 

growing season, which resulted in a CCI increase between 1–3%. During the middle portion of 469 

the season, the greatest movements were observed in good conditions (increase in coverage) and 470 

in poor and very poor conditions (decrease in coverage) resulting in a CCI increase between 2–471 

3%. However, by the latter portion of the growing season, even under drought conditions, TCs 472 

caused crops that were in excellent and good condition tend to be downgraded to fair and poor 473 

condition on average (Fig. 6f). These were the only changes in the growing season under dry 474 

precursor soil moisture conditions that were statistically significant to the 95% confidence level 475 

(Appendix I). The result was a decrease in the CCI between 2–3%. 476 

 Near-normal precursor soil moisture conditions were present in 63% of the cases in this 477 

study. When these conditions were present prior to TC impact, after the TC, crop conditions 478 

generally remained stable on average as there were no statistically significant differences 479 

between conditions for week 1 and week 2 in the early and middle portion of the growing season 480 

(Figs. 6g, 6h; Appendix I), resulting in no change to CCI. It was not until the latter portion of the 481 



 

growing season when conditions that were excellent or good downgraded to fair, poor, or very 482 

poor condition on average, with CCI decreases of nearly 5% (Fig. 6i). When comparing the total 483 

crop condition changes (CCI) for all precursor soil moisture conditions and timing, statistically 484 

significant differences were noted between near normal and wet precursor conditions in the latter 485 

portion of the growing season versus the early and middle portions (Appendix J).  486 

3.5. Yield changes 487 

 When working with USDA crop condition data, an essential component to the 488 

communication and interpretation of the data is how yields respond to variations in the CCI 489 

(Bundy and Gensini, 2022). This is a crucial part of the analysis as not only does further the 490 

understanding of yield responses to tropical cyclones, it also confirms the use of the USDA crop 491 

condition dataset for in season risk assessment and future analyses. As the CCI increases, yield 492 

prospects generally increase as well across most crops and states analyzed in this research (Fig. 493 

7). There is a varying level across all crops and states of how much the CCI can explain 494 

variability in yield, and therefore, should be used in practice with caution. Corn tends to have the 495 

strongest correlation between CCI and yield as the average coefficient of determination in the 496 

Coastal Southeast U.S. region is 0.63, with South and North Carolina possessing the highest 497 

coeffients of determination for any state-crop combination at 0.87 and 0.80, respectively (Fig. 498 

7a). The next strongest relationship between crop condition ratings (CCI) and yield is for 499 

soybeans across the region as the average coefficient of determination is 0.44. Similar to corn, 500 

states along the Atlantic Ocean coast possess the stronger connection between the CCI and 501 

soybean yield (Georgia, South Carolina, North Carolina) versus states along the Gulf Coast 502 

(Texas, Louisiana, Mississippi, Alabama; Fig. 7f). Cotton, peanuts, and sorghum all have similar 503 



 

relationships between CCI and yield with coefficient of determination averages for the region of 504 

0.35, 0.33, and 0.38, respectively (Figs. 7b, 7c, 7e).  505 

 506 

Fig. 7. Annual average Crop Condition Index (CCI) values plotted against annual yield values 507 

for each state paneled by crop in the Coastal Southern U.S. region: a) corn, b) cotton, c) peanuts, 508 

d) rice, e) sorghum, f) soybeans. Regression r2 and p values are listed next to their respective 509 

states.  510 

 511 



 

Rice is the lowest in terms of the CCI relationship with yield as the coefficient of determination 512 

average in the region is 0.14. Nonetheless, the CCI can still explain a statistically significant 513 

(95% confidence level) amount of the variability in rice yield. The specific linear model 514 

equations for each regression line in Fig. 7 can be utilized from Appendix K. 515 

Between each crop, yield changes were generally homogeneous (Fig. 8a). Statistically, 516 

there were no significant differences between each of the respective crops for after the TC and 517 

for end of year yield to the 95% confidence level (Appendix L). After a TC, modeled yield 518 

changes were marginal as changes ranged between -1–1% on average for each crop. 519 

 520 

Fig. 8. Change in yield percentages one week after a tropical cyclone impacts a cropping area 521 

(darker hue) and the difference between the yield forecast and actual yield (lighter hue) paneled 522 

by cropping type, month, intensity, and soil condition and timing. Each box and whisker present 523 

the same six number summary as described in Fig. 3. (Color not needed for print) 524 



 

 525 

The same holds true for end of season yield as each crop displayed only marginal changes 526 

ranging between -1–2% (Fig. 8a). When examining end of season yield, variability was much 527 

greater compared to modeled yield changes after the week 1 and week 2 average changes due to 528 

improvements in conditions or worsening conditions after TC impact (based on the remainder of 529 

the growing season’s weather conditions). 530 

Aggregating all crops together for the yield analysis, the percentage changes were 531 

aggregated together rather than the actual yield numbers to avoid production biases. When all 532 

crops were aggregated together and examined on a monthly interval, September and October 533 

compared to July and August were the only months in which the average change in modeled 534 

yield percentages after TC impact were statistically different (Fig. 8b; Appendix L). Within 535 

September and October, average modeled yield changes between week 1 and week 2 crop 536 

conditions resulted in about a 3% decrease in yield. Actual end of year yield changes amounted 537 

to a 2% decrease in yield within September and October. When examining yield response by TC 538 

intensity, modeled yield changes as well as end of year yield changes tended to increasingly 539 

worsen on average as the TC intensity increases (Fig. 8c). After tropical depression impact, yield 540 

tended to slightly improve for both modeled changes and actual end of year changes (+1–2%). 541 

On average, tropical storms did not tend to impact yield in any direction. Once hurricane status 542 

was reached, modeled yield changes decreased between 3–6% after TC impact, and end of year 543 

yield numbers also decreased 1–3%.  544 

 When examining yield response to TC impacts based on precursor soil moisture 545 

conditions (Figs. 8d, 8e, 8f), the trend was generally the same as the crop condition responses. 546 

Thus, under wet precursor conditions during the early and latter portion of the growing season 547 



 

resulted in modeled yield changes and to an extent, end of year yield changes to decrease on 548 

average by 1–5%. Under near-normal precursor soil moisture conditions, yield decreased during 549 

the latter portion of the growing season on average after TC impact by 3–4%. Under dry 550 

conditions, TCs tended to improve yield during the early and middle portions of the growing 551 

season while decreasing yield in the latter portion of the growing season by up to 2% on average. 552 

 From and event by event standpoint, the top five TCs based on the crop condition 553 

changes and yield changes after the TC all had common attributes (Table 2). These TCs had a 554 

maximum strength of tropical depression or tropical storm and occurred in August or earlier.  555 

 556 

Table 2. Top five most beneficial and detrimental tropical cyclone events based on crop 557 

condition and yield projection response (1986-2021). Crop Condition Index (CCI) Change, Yield 558 

Change, and End of Year Yield Change were averaged across all states and crops examined for 559 

the tropical cyclone. No ranking is established in this table. 560 

Tropical Cyclone Events Beneficial for Crops 
Name Max Strength Dates Crops States CCI Change Yield 

Change

End of Year 

Yield Change

Danny 1997 TS 7/21 - 7/24 Cor, Cot, Pea, Soy AL, FL, NC, SC 4.1% 6.3% 3.5% 
Beryl 1988 TD 8/10 - 8/10 Cot, Ric, Sor, Soy LA 1.8% 7.6% 9.7% 
Isaias 2020 TS 8/4 - 8/4 Cor, Cot, Pea, Soy NC 4.0% 5.3% -1.6% 
Jerry 1995 TD 8/25 - 8/27 Cor, Cot, Soy GA 4.7% 4.0% 6.6% 
Cindy 2005 TD 7/6 -7/7 Cot, Pea AL 5.8% 3.5% -0.8% 

Tropical Cyclone Events Detrimental for Crops 
Name Max Strength Dates Crops States CCI Change Yield 

Change

End of Year 

Yield Change

Hugo 1989 H4 9/22 - 9/22 Cor, Cot, Soy NC, SC -23.1% -18.6% -3.9% 
Floyd 1999 H1 9/16 - 9/16 Cor, Cot, Pea, Soy NC -12.0% -16.2% -13.9% 
Fran 1996 H3 9/6 - 9/6 Cor, Cot, Pea, Soy NC -9.0% -10.9% -3.9% 

Matthew 2016 H1 10/8 - 10/8 Cot, Pea, Soy SC -12.9% -9.9% -12.5% 
Ivan 2004 H3 9/16 - 9/17 Cot, Pea AL -11.3% -7.4% 0.9% 

 561 



 

In addition, four of the five TCs went over cropland area with precursor PMDI values near-562 

normal or drier than normal. On average, the range of CCI increase for these top events averaged 563 

across the study domain and across all crops was a 1.8%–5.8% increase while the modeled yield 564 

chances after the TC ranged between an increase of 3.5%–7.6%. Not all the top events resulted 565 

in a yield increase by the end of the growing season though, which is due to potential weather 566 

impacts after the TC that resulted in a decline in crop conditions and yield. For the TC events 567 

that were most detrimental to crops in the Coastal Southern U.S. region, another pattern is 568 

established in that the maximum strength of the TC reached hurricane status and occurred in 569 

September or later. Precursor soil moisture values were mixed for these events as they ranged 570 

from drier than normal to wetter than normal. Category Four Hugo in 1989 resulted in a regional 571 

average CCI decrease of 23.1% and yield prospect decrease of 18.6%. Though the largest end of 572 

year yield decrease (13.9%) came with Category One Floyd in 1999 that impacted four different 573 

crops in North Carolina. Since 1986, four of the five most detrimental TC events to crop 574 

conditions and yield across the study region occurred in North and South Carolina.  575 

 576 

4. DISCUSSION 577 

Within the 36-year (1986–2021) study period, impacts of TCs were both positive and 578 

negative for overall crop quality and yield. In response to local topography, soils, land use, 579 

access to transportation, and weather patterns, agriculture in the Coastal South U.S. is highly 580 

heterogeneous (Knox et al. 2014). This is somewhat in contrast to what was quantified in this 581 

study as analysis of variance indicated that there were no statistical differences amongst field 582 

crop responses to TCs (Fig. 3; Appendix D). However, this study examined the effects of TCs 583 

since 1986 across eight states using state-level data for six field crops, which was previously 584 



 

noted as a limitation to this work. In other words, the publicly available state-level data may not 585 

be able to capture the heterogeneities the Coastal Southern U.S. agricultural region possesses, 586 

especially since hybrid characteristics can influence the rate of grain drying become more 587 

important during unfavorable conditions such as a TC (Troyer and Ambrose, 1971; Cavalieri and 588 

Smith, 1985).  589 

 The latter portion of the growing season is critical for crop quality and yield impacts from 590 

TCs as some of the most notable negative changes were observed in September and October 591 

(Figs. 4e, 4f, 6c, 6f, 6i, 8b, 8d, 8e, 8f). These negative changes in crop conditions and crop yield 592 

can be attributed to a few nontrivial factors. The point made about grain drying seems to be an 593 

essential one given the overall negative crop quality and yield reactions to TCs in the latter 594 

portion of the growing season. Harvest time, which runs from late August through late October 595 

for the field crops examined in this study, is a period when dry conditions are more favorable for 596 

crop quality. Before harvest, grain crops need to undergo a drydown period to achieve maturity 597 

and begin harvest, making this important for maximizing yield (Coulter, 2008; Nielson, 2018). 598 

For example, ideal harvest moistures for corn ranges from 15–20%, or higher (Elmore and 599 

Abendroth, 2010). Delaying harvest until corn dries increases the risk for frost damage, and 600 

fields with poor stalk quality become increasingly susceptible to stalk lodging (Cleugh et al. 601 

1998; Lindsey et al. 2021). As a result, harvest efficiency decreases and the potential for 602 

significant yield loss increases. The same can be said about other crops in this analysis including 603 

cotton, rice, sorghum, and soybeans where a critical drydown period is essential for maturity, 604 

harvest, and maximizing yield (Philbrook and Oplinger, 1989; Zhang et al. 1996; Elmore and 605 

Roeth, 2013; Kebebe et al., 2015). On the other hand, peanut crops need adequate moisture 606 

before harvest so that plants do not get pulled off the vines and then are left in the ground as a 607 



 

result of drier conditions. For cotton, too much moisture from rainfall as seeds inside the bolls 608 

get too wet and start sprouting, consequently, reducing the quality and yield (Zuberer and 609 

Kenerley, 1993; Landivar and Benedict, 1996; Mailhot et al., 2012). In addition, peak harvest 610 

time is concurrent with peak TC frequency in the Coastal Southern U.S.; thus impacting 1) soil 611 

moisture in fields making them difficult for machinery to harvest the crop, and 2) as mentioned, 612 

the quality of crops that require ample drying time during maturity (Knox et al., 2014; Nielson, 613 

2018). This may also explain why TCs did not show any evidence of improving crop conditions 614 

even when precursor soil moisture conditions were considered dry during the latter portion of the 615 

season (Fig. 8f). On the other hand, TCs did act to improve overall crop conditions and crop 616 

yield prospects in the early and middle stages of the growing season (Figs. 4b, 4c, 6d, 6e, 8b, 8e, 617 

8f) due to crops requiring adequate soil moisture during the developing and reproductive stages 618 

in the phenological cycle. Therefore, TCs do provide some benefits to crops if the timing is 619 

correct. 620 

 Analyzing crop condition response with TC classification, or intensity, also presented 621 

results that were to be expected when considering increased wind speeds with higher 622 

classifications. That is, the greater the intensity, the higher likelihood of a decrease in optimal 623 

crop conditions (Fig. 5). As noted, this can be explained in part by the increase in winds with an 624 

increase in TC intensity category, as stronger winds create a higher likelihood of greensnap and 625 

root lodging. In addition, a statistically significant positive correlation has been found between 626 

maximum wind speeds in TCs with average TC-induced rainfall totals (Cerveny and Newman, 627 

2000). Though, this correlation is not always clear, and future work may examine the impacts 628 

TCs have on agriculture based on rainfall totals. This would require a higher resolution crop 629 

condition dataset, such as the recently released gridded crop condition dataset by the USDA 630 



 

NASS which dates to 2015 (Rosales, 2021). The result was a greater decrease in crop condition 631 

ratings conducive of optimal yield potential. Excess rainfall at any point in the growing season 632 

can cause physical damage to crops by ponding and waterlogging which can lead to root rot, soil 633 

erosion and salinity, and sprouting of grains, which ultimately can lead to a reduction in optimal 634 

crop condition coverage and potentially a reduction in yield (Li et al., 2019; Bundy and Gensini, 635 

2022). In addition, the strongest TCs are favored during the latter portion of the growing season 636 

(NHC, 2022). This is important because TCs during the latter portion of the growing season not 637 

only can cause greensnap and root lodging, but waterlogging can prevent field work operations 638 

during the harvest period. 639 

 In terms of resilience, agricultural producers and other stakeholders need climate data and 640 

information such as the results of this study due to the importance of decision making and 641 

adaptation strategies (Changnon, 2007). Furthermore, the interactions among producers and 642 

meteorologists plays a critical role in increasing the integration and use of climate knowledge for 643 

adaption (Brugger et al., 2016). Such adaptation strategies can be in the form of shifting 644 

production systems, investing in crop insurance, or advancing in crop management, technologies, 645 

and/or hybrids that are more resilient to the potential detrimental effects TCs have on crop 646 

conditions.  647 

 648 

5. CONCLUSIONS 649 

 The Coastal Southern U.S. is uniquely vulnerable to tropical cyclone (TC) impacts during 650 

each growing season. Statistically significant differences between crop condition categories 651 

revealed that TCs do have a notable impact on agriculture in this region. The overall tendency is 652 

for crops in excellent and good condition to be downgraded to fair, poor, and very poor condition 653 



 

after a TC impact. Corn, cotton, peanuts, rice, sorghum, and soybean displayed similar condition 654 

changes after TC impact, and thus, were aggregated together since crop type was not a 655 

statistically significant predictor of condition changes. TC intensity was the most statistically 656 

significant predictor of crop condition changes in the Coastal Southern U.S.  Crops were most 657 

negatively impacted when 1) crops are in the latter portion of the growing cycle thus requiring 658 

drier conditions for maturity and fieldwork operations, 2) the TC reached major hurricane status, 659 

and 3) when precursor soil moisture conditions were in any state of surplus in the latter portion 660 

of the growing season. Consequently, yield prospects decline after a TC based on the declines in 661 

coverage of excellent and good conditioned crops (yield declines of 1–6% on average); though, 662 

crop conditions tend to recover resulting in yield prospects to also recover to a marginal extent 663 

by the end of the season (declines of up to 3%). Overall, the statistics presented in this study 664 

provide a general overview of crop quality and crop yield responses to TCs, which had not been 665 

quantified to this point in literature. Quantifying these week-to-week changes in crop condition 666 

ratings after TC impact provides risk assessment information for agricultural producers in this 667 

region. This may aid in the decision-making process regarding crop management and protection, 668 

potentially in the form of insurance, especially during critical periods such as harvest in order to 669 

maximize revenue. Under a changing climate, uncertainty in TCs trends further emphasizes the 670 

need for resilience and mitigation efforts in order to ensure a more sustainable agricultural 671 

system in the important agricultural sector that is the Coastal Southern U.S. 672 

 673 
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APPENDICES 700 

 701 

Appendix A. Average annual production (kg in millions) at county-level for each crop examined 702 

in the Coastal Southern U.S. region (1986–2021). Locations within the study area without a 703 

county outline did not have any production for the respective crop. (Color not needed for print) 704 



 

 705 

Appendix B. Average annual acreage (ha in thousands) at county-level for each crop examined 706 

in the Coastal Southern U.S. region (1986–2021). Locations within the study area without a 707 

county outline did not have any production for the respective crop. (Color not needed for print) 708 

 709 

 710 

 711 

 712 

 713 



 

Appendix C. TukeyHSD multiple comparisons results between each condition combination by 714 

crop for both week 1 and week 2. Table displays the differences between the means along with 715 

the corresponding p values. Bolded text represents statistical significance at 0.05 significance 716 

level. 717 

 718 

  Corn Cotton Peanuts Rice Sorghum Soybeans 

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 

  Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val 
F-E -0.73 0.818 -0.81 0.95 0.76 0.884 1.28 0.639 -0.15 1 -0.49 0.998 0.48 0.998 3.52 0.201 -0.28 0.998 1.71 0.667 2.19 0.147 2.14 0.367 
G-E -0.75 0.796 -1.64 0.502 -2.56 0.003 -2.28 0.07 -2.21 0.128 -2.31 0.284 -3.70 0.041 -2.25 0.854 0.28 0.998 0.91 0.988 -2.79 0.025 -3.89 0.005 
P-E 0.25 0.998 0.74 0.929 0.97 0.731 1.71 0.316 0.31 0.999 0.21 1 0.40 0.999 2.57 0.55 -0.03 1 1.20 0.899 2.11 0.179 0.97 0.949 
VP-E -0.09 1 0.37 0.997 1.26 0.456 1.50 0.468 0.56 0.977 -0.41 0.999 0.63 0.991 1.74 0.87 0.58 0.948 0.47 0.998 0.69 0.973 -0.01 1 
G-F -0.03 1 -0.83 0.945 -3.33 3E-05 -3.56 3E-04 -2.05 0.187 -1.82 0.556 -4.18 9E-05 -5.78 0.002 0.56 0.958 -0.80 0.98 -4.98 7E-07 -6.03 7E-07 
P-F 0.98 0.556 1.55 0.285 0.21 1 0.42 0.996 0.46 0.995 0.70 0.988 -0.08 1 -0.95 0.912 0.25 0.999 -0.50 0.984 -0.08 1 -1.17 0.893 
VP-F 0.64 0.886 1.18 0.591 0.50 0.979 0.22 1 0.71 0.935 0.07 1 0.15 1 -1.78 0.391 0.86 0.775 -1.23 0.548 -1.50 0.553 -2.15 0.361 
P-G 1.00 0.528 2.38 0.025 3.53 7E-06 3.99 3E-05 2.52 0.052 2.52 0.193 4.10 1E-04 4.83 0.017 -0.31 0.997 0.29 1 4.90 1E-06 4.86 1E-04 
VP-G 0.66 0.868 2.02 0.093 3.83 7E-07 3.78 1E-04 2.76 0.003 1.90 0.51 4.33 8E-06 3.99 0.084 0.31 0.997 -0.44 0.999 3.48 0.002 3.88 0.005 
VP-P -0.34 0.993 -0.36 0.985 0.29 0.998 -0.21 1 0.24 1 -0.63 0.993 0.23 0.999 -0.84 0.946 0.61 0.937 -0.73 0.921 -1.42 0.614 -0.98 0.947 
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Appendix D. TukeyHSD multiple comparisons results between each crop combination by 728 

condition for both week 1 and week 2. Table displays the differences between the means along 729 

with the corresponding p values. Bolded text represents statistical significance at 0.05 730 

significance level. 731 

 732 

  
Excellent Good Fair Poor Very Poor 

Crop Condition 

Index 

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 

  Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val 
Cot-Cor -0.37 0.987 -0.84 0.786 -2.19 0.509 -1.47 0.939 1.11 0.833 1.43 0.856 0.35 0.994 0.35 0.994 0.98 0.439 0.86 0.51 -1.37 0.324 -1.36 0.645 
Pea-Cor 0.10 1 0.20 1 -1.36 0.916 -0.46 1 0.67 0.984 0.70 0.995 0.16 1 0.16 1 0.31 0.994 -0.01 1 -0.55 0.974 -0.04 1 
Ric-Cor -0.05 1 -1.95 0.394 -2.80 0.676 -2.44 0.924 2.73 0.356 1.42 0.978 -0.10 1 -0.10 1 0.09 1 0.12 1 -0.81 0.967 -3.36 0.157 
Sor-Cor -0.40 0.997 -0.70 0.976 0.63 0.999 2.19 0.933 0.05 1 -0.52 1 -0.68 0.978 -0.68 0.978 0.27 0.999 0.03 1 -0.07 1 0.29 1 
Soy-Cor -0.73 0.844 -0.24 0.999 -2.77 0.324 -2.49 0.704 2.19 0.237 2.89 0.265 1.13 0.556 1.13 0.556 0.05 1 -0.04 1 -1.43 0.367 -0.83 0.957 
Pea-Cot 0.47 0.942 1.04 0.482 0.83 0.978 1.01 0.981 -0.44 0.995 -0.73 0.987 -0.19 0.999 -0.19 0.999 -0.67 0.725 -0.87 0.386 0.82 0.752 1.32 0.568 
Ric-Cot 0.32 0.999 -1.11 0.85 -0.61 0.999 -0.97 0.998 1.62 0.799 -0.01 1 -0.44 0.996 -0.44 0.996 -0.88 0.834 -0.75 0.909 0.56 0.991 -1.99 0.639 
Sor-Cot -0.03 1 0.14 1 2.82 0.562 3.67 0.508 -1.06 0.956 -1.95 0.844 -1.02 0.836 -1.02 0.836 -0.71 0.922 -0.83 0.81 1.30 0.709 1.66 0.728 
Soy-Cot -0.35 0.983 0.60 0.915 -0.58 0.996 -1.01 0.983 1.08 0.79 1.46 0.796 0.79 0.742 0.79 0.742 -0.93 0.382 -0.91 0.356 -0.05 1 0.54 0.986 
Ric-Pea -0.15 1 -2.15 0.242 -1.44 0.968 -1.98 0.962 2.06 0.624 0.72 0.999 -0.26 1 -0.26 1 -0.21 1 0.12 1 -0.26 1 -3.32 0.135 
Sor-Pea -0.50 0.99 -0.90 0.917 1.99 0.872 2.65 0.834 -0.62 0.997 -1.22 0.981 -0.84 0.935 -0.84 0.935 -0.04 1 0.04 1 0.48 0.996 0.33 1 
Soy-Pea -0.82 0.685 -0.44 0.984 -1.41 0.868 -2.02 0.798 1.52 0.548 2.18 0.49 0.97 0.621 0.97 0.621 -0.26 0.996 -0.04 1 -0.88 0.774 -0.79 0.951 
Sor-Ric -0.35 0.999 1.25 0.894 3.43 0.63 4.63 0.582 -2.68 0.556 -1.94 0.953 -0.58 0.995 -0.58 0.995 0.18 1 -0.09 1 0.74 0.989 3.65 0.203 
Soy-Ric -0.68 0.963 1.71 0.51 0.04 1 -0.04 1 -0.54 0.999 1.47 0.971 1.23 0.754 1.23 0.754 -0.05 1 -0.16 1 -0.61 0.989 2.53 0.42 
Soy-Sor -0.33 0.999 0.46 0.996 -3.40 0.395 -4.68 0.285 2.14 0.564 3.41 0.363 1.81 0.323 1.81 0.323 -0.22 1 -0.07 1 -1.35 0.711 -1.12 0.946 
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Appendix E. TukeyHSD multiple comparisons results between each condition combination by 740 

month for both week 1 and week 2. Table displays the differences between the means along with 741 

the corresponding p values. Bolded text represents statistical significance at 0.05 significance 742 

level. 743 

 744 

  May Jun Jul Aug Sep Oct 

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 

  Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val 
F-E -2.60 0.501 -2.47 0.666 -2.07 0.199 -3.12 0.017 -3.55 1E-06 -4.37 5E-04 0.86 0.371 0.42 0.99 2.22 0.028 4.02 6E-04 2.96 0.301 5.58 0.021 
G-E -0.53 0.999 -4.40 0.091 -0.86 0.93 -0.20 1 -1.60 0.146 -1.05 0.917 -1.04 0.175 -1.20 0.502 -3.60 1E-05 -4.68 3E-05 -3.00 0.285 -0.91 0.995 
P-E -0.13 1 -1.13 0.983 -0.53 0.992 -0.83 0.955 -2.02 0.027 -1.79 0.527 -0.18 0.998 -0.48 0.982 2.06 0.053 3.73 0.002 6.24 2E-04 5.79 0.014 
VP-E -0.07 1 -1.33 0.965 -0.53 0.992 -1.44 0.668 -1.65 0.123 -1.68 0.597 -0.13 1 -0.32 0.997 1.78 0.142 2.36 0.151 3.37 0.171 4.70 0.083 
G-F 2.07 0.731 -1.93 0.847 1.20 0.765 2.92 0.032 1.94 0.038 3.32 0.02 -1.90 3E-04 -1.61 0.174 -5.82 0 -8.70 0 -5.96 5E-04 -6.48 0.004 
P-F 2.47 0.559 1.33 0.965 1.54 0.526 2.29 0.168 1.53 0.187 2.58 0.137 -1.04 0.169 -0.90 0.778 -0.16 1 -0.29 1 3.28 0.194 0.21 1 
VP-F 2.53 0.53 1.13 0.983 1.54 0.526 1.68 0.506 1.90 0.048 2.69 0.107 -0.99 0.221 -0.73 0.892 -0.44 0.991 -1.66 0.534 0.41 1 -0.88 0.996 
P-G 0.40 1 3.27 0.359 0.34 0.999 -0.63 0.987 -0.41 0.989 -0.74 0.981 0.85 0.381 0.71 0.903 5.66 0 8.41 0 9.24 0 6.70 0.002 
VP-G 0.47 1 3.07 0.432 0.34 0.999 -1.24 0.794 -0.05 1 -0.63 0.991 0.91 0.307 0.88 0.794 5.38 0 7.04 0 6.37 2E-04 5.61 0.019 
VP-P 0.07 1 -0.20 1 0.00 1 -0.61 0.988 0.36 0.994 0.11 1 0.06 1 0.16 1 -0.28 0.999 -1.37 0.726 -2.87 0.335 -1.09 0.989 
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Appendix F. TukeyHSD multiple comparisons results between each month combination by each 754 

condition for both week 1 and week 2. Table displays the differences between the means along 755 

with the corresponding p values. Bolded text represents statistical significance at 0.05 756 

significance level. 757 

 758 

  Excellent Good Fair Poor Very Poor 
Crop Condition 

Index 

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 

  Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val 
May-Jun -0.13 1 0.75 0.993 0.20 1 -3.45 0.908 -0.66 0.999 1.40 0.994 0.26 1 0.45 1 0.33 1 0.86 0.962 -0.24 1 -1.03 0.996 
May-Jul -1.09 0.933 0.09 1 0.54 1 -3.26 0.917 -0.96 0.996 1.99 0.965 1.03 0.964 0.75 0.997 0.48 0.998 0.43 0.998 -0.90 0.984 -1.17 0.991 
May-Aug 0.77 0.981 1.59 0.784 1.12 0.998 -1.17 0.999 -3.13 0.511 -1.30 0.994 0.53 0.998 0.94 0.99 0.64 0.99 0.57 0.992 0.18 1 0.30 1 
Jun-Jul -0.96 0.743 -0.66 0.957 0.34 1 0.19 1 -0.30 1 0.59 0.999 0.77 0.917 0.30 1 0.15 1 -0.42 0.983 -0.66 0.965 -0.15 1 
Jun-Aug 0.90 0.692 0.84 0.827 0.92 0.986 2.28 0.79 -2.47 0.151 -2.70 0.331 0.26 0.999 0.49 0.993 0.32 0.995 -0.28 0.995 0.43 0.992 1.33 0.808 
Jul-Aug 1.86 0.011 1.50 0.147 0.58 0.997 2.10 0.772 -2.17 0.166 -3.29 0.067 -0.50 0.963 0.19 1 0.17 1 0.14 1 1.08 0.549 1.47 0.625 
Sep-May -1.16 0.897 -3.08 0.119 -4.23 0.518 -3.36 0.892 3.66 0.323 3.41 0.699 1.04 0.955 1.79 0.849 0.69 0.986 0.62 0.988 -2.24 0.496 -3.44 0.438 
Sep-Jun -1.29 0.286 -2.33 0.01 -4.02 0.041 -6.80 0.002 3.00 0.035 4.81 0.004 1.30 0.382 2.23 0.098 1.02 0.5 1.48 0.073 -2.48 0.007 -4.47 4E-04 
Sep-Jul -2.25 7E-04 -2.99 2E-05 -3.68 0.033 -6.62 4E-04 2.71 0.033 5.40 1E-04 2.06 0.008 2.53 0.013 1.16 0.219 1.05 0.252 -3.14 2E-05 -4.62 2E-05 
Sep-Aug -0.39 0.954 -1.49 0.039 -3.10 0.024 -4.52 0.007 0.53 0.978 2.11 0.256 1.56 0.018 2.72 3E-04 1.33 0.021 1.19 0.034 -2.06 0.001 -3.14 8E-04 
Sep-Oct 1.42 0.288 1.82 0.281 0.82 0.994 -1.95 0.951 0.69 0.99 0.26 1 -2.76 0.003 -0.24 1 -0.17 1 -0.51 0.975 1.69 0.265 0.43 0.999 
Oct-May -2.58 0.273 -4.90 0.007 -5.05 0.427 -1.41 0.999 2.98 0.666 3.15 0.858 3.79 0.049 2.02 0.859 0.86 0.976 1.13 0.911 -3.93 0.061 -3.87 0.467 
Oct-Jun -2.71 0.01 -4.15 4E-04 -4.85 0.076 -4.85 0.387 2.31 0.492 4.55 0.161 4.05 7E-05 2.47 0.337 1.19 0.623 1.99 0.108 -4.17 1E-04 -4.90 0.015 
Oct-Jul -3.67 2E-05 -4.81 5E-06 -4.51 0.082 -4.67 0.373 2.02 0.575 5.14 0.052 4.82 1E-07 2.77 0.167 1.33 0.42 1.57 0.274 -4.83 8E-07 -5.05 0.006 
Oct-Aug -1.81 0.087 -3.31 0.002 -3.93 0.106 -2.57 0.856 -0.15 1 1.85 0.879 4.32 2E-07 2.96 0.07 1.50 0.186 1.70 0.127 -3.75 5E-05 -3.57 0.077 
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Appendix G. TukeyHSD multiple comparisons results between each condition combination by 767 

tropical cyclone intensity for both week 1 and week 2. Table displays the differences between the 768 

means along with the corresponding p values. Bolded text represents statistical significance at 769 

0.05 significance level. 770 

 771 

  TD TS H1 H2 H3 H4 

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 

  Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val 
F-E -0.3 0.992 -1.0 0.544 -0.3 0.981 -0.3 0.992 3.6 0.02 4.6 0.137 4.5 0.111 5.2 0.051 1.2 0.995 0.2 1 6.6 0.804 12.8 0.362 
G-E -0.7 0.703 -0.9 0.691 -0.8 0.484 -1.3 0.253 -4.9 4E-04 -6.3 0.011 -5.7 0.017 -5.4 0.037 -10.5 3E-04 -6.5 0.207 -11.1 0.283 -13.5 0.304 
P-E -0.6 0.886 -1.2 0.423 0.2 0.997 0.2 1 5.1 2E-04 5.9 0.022 3.9 0.233 5.2 0.047 2.3 0.929 6.6 0.201 6.3 0.831 6.7 0.903 
VP-E -0.6 0.808 -1.0 0.544 0.3 0.99 -0.1 1 2.5 0.253 3.4 0.465 3.1 0.519 3.6 0.341 1.5 0.99 3.9 0.745 7.9 0.658 6.3 0.923 
G-F -0.4 0.957 0.1 1 -0.5 0.896 -0.9 0.605 -8.5 0 -10.9 2E-07 -10.3 2E-07 -10.5 2E-07 -11.7 4E-05 -6.8 0.175 -17.6 0.013 -26.2 0.002 
P-F -0.3 0.996 -0.1 1 0.5 0.846 0.5 0.948 1.5 0.792 1.3 0.984 -0.6 0.999 0.1 1 1.0 0.998 6.3 0.236 -0.3 1 -6.1 0.934 
VP-F -0.3 0.985 0.0 1 0.6 0.773 0.2 0.999 -1.2 0.916 -1.2 0.986 -1.5 0.961 -1.5 0.958 0.2 1 3.7 0.792 1.3 1 -6.5 0.915 
P-G 0.2 0.999 -0.3 0.999 1.0 0.218 1.5 0.13 10.0 0 12.2 0 9.7 1E-06 10.6 2E-07 12.7 5E-06 13.1 2E-04 17.4 0.016 20.2 0.029 
VP-G 0.1 1 -0.1 1 1.0 0.162 1.1 0.376 7.4 0 9.7 6E-06 8.8 2E-05 9.0 2E-05 11.9 2E-05 10.4 0.005 18.9 0.006 19.8 0.034 
VP-P -0.1 1 0.1 1 0.1 1 -0.3 0.994 -2.6 0.199 -2.5 0.759 -0.9 0.996 -1.6 0.951 -0.8 0.999 -2.7 0.937 1.6 1 -0.4 1 
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Appendix H. TukeyHSD multiple comparisons results between each tropical cyclone type by 780 

condition for both week 1 and week 2. Table displays the differences between the means along 781 

with the corresponding p values. Bolded text represents statistical significance at 0.05 782 

significance level. 783 

 784 

  Excellent Good Fair Poor Very Poor 
Crop Condition 

Index 

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 

  Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val 
TD-H1 1.7 0.04 2.7 0.002 5.9 6E-05 8.1 5E-05 -2.2 0.195 -3.0 0.231 -3.9 0 -4.4 5E-06 -1.4 0.1 -1.7 0.016 4.0 0 6.2 1E-07 
TD-H2 1.1 0.747 2.7 0.047 5.1 0.049 5.7 0.139 -3.3 0.143 -3.8 0.278 -0.8 0.944 -2.5 0.225 -2.0 0.079 -2.1 0.042 3.1 0.013 4.4 0.018 
TD-H3 -0.6 0.983 1.7 0.603 9.1 7E-05 7.3 0.061 -2.2 0.704 0.4 1 -3.5 0.007 -6.0 4E-05 -2.7 0.016 -3.3 8E-04 4.2 9E-04 5.8 0.003 
TD-H4 2.4 0.288 3.3 0.126 12.7 3E-06 15.8 2E-05 -4.5 0.149 -10.5 5E-04 -4.5 0.004 -4.6 0.048 -6.1 1E-07 -4.1 8E-04 8.6 0 8.8 1E-04 
TS-H1 1.4 0.152 2.1 0.026 5.5 1E-04 7.1 4E-04 -2.6 0.075 -2.9 0.238 -3.5 4E-07 -3.6 2E-04 -0.8 0.607 -1.4 0.069 3.4 4E-06 5.1 9E-06 
TS-H2 0.8 0.927 2.1 0.212 4.7 0.078 4.7 0.312 -3.6 0.072 -3.7 0.29 -0.4 0.998 -1.8 0.6 -1.5 0.36 -1.8 0.118 2.4 0.093 3.3 0.147 
TS-H3 -1.0 0.895 1.1 0.907 8.7 1E-04 6.3 0.146 -2.5 0.548 0.5 1 -3.0 0.026 -5.3 4E-04 -2.2 0.101 -3.0 0.003 3.5 0.009 4.6 0.033 
TS-H4 2.0 0.456 2.7 0.314 12.4 6E-06 14.9 8E-05 -4.8 0.093 -10.4 5E-04 -4.0 0.012 -3.8 0.149 -5.6 2E-06 -3.8 0.002 7.9 0 7.7 0.001 
TS-TD -0.3 0.963 -0.6 0.786 -0.4 0.999 -1.0 0.957 -0.3 0.996 0.1 1 0.4 0.935 0.7 0.781 0.6 0.662 0.3 0.958 -0.7 0.691 -1.1 0.588 
H2-H1 0.6 0.987 0.0 1 0.8 0.999 2.4 0.94 1.1 0.979 0.8 0.999 -3.1 0.022 -1.9 0.691 0.6 0.974 0.3 0.998 1.0 0.94 1.8 0.864 
H3-H1 2.4 0.177 1.0 0.953 -3.2 0.671 0.8 1 -0.1 1 -3.4 0.659 -0.5 0.998 1.7 0.84 1.3 0.701 1.5 0.512 -0.1 1 0.4 1 
H3-H2 1.8 0.652 1.0 0.974 -4.0 0.592 -1.6 0.996 -1.1 0.991 -4.2 0.561 2.6 0.284 3.5 0.23 0.7 0.987 1.2 0.844 -1.1 0.963 -1.3 0.984 
H4-H1 -0.7 0.994 -0.6 0.998 -6.8 0.085 -7.7 0.23 2.3 0.857 7.6 0.058 0.5 0.999 0.2 1 4.7 3E-04 2.3 0.247 -4.5 0.012 -2.6 0.819 
H4-H2 -1.3 0.938 -0.6 0.999 -7.6 0.082 -10.2 0.083 1.2 0.994 6.7 0.2 3.6 0.119 2.1 0.878 4.1 0.012 2.0 0.531 -5.5 0.004 -4.4 0.393 
H4-H3 -3.0 0.258 -1.6 0.92 -3.6 0.828 -8.5 0.272 2.3 0.911 10.9 0.006 1.0 0.986 -1.5 0.974 3.4 0.088 0.8 0.987 -4.4 0.058 -3.0 0.806 
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Appendix I. TukeyHSD multiple comparisons results between each condition combination by 792 

precursor soil moisture and growing season timing for both week 1 and week 2. Table displays 793 

the differences between the means along with the corresponding p values. Bolded text represents 794 

statistical significance at 0.05 significance level. 795 

 796 

  
Wet- early Wet- mid Wet- late 

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 

  Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val 

F-E -0.6 0.997 -2.1 0.839 -0.5 0.997 -4.0 0.023 0.7 0.952 6.2 0.033 

G-E -1.1 0.942 -1.8 0.915 -2.7 0.145 -3.1 0.147 -1.3 0.459 -3.2 0.628 

P-E -0.1 1 -1.3 0.974 -0.4 1 -1.4 0.878 1.2 0.574 3.7 0.458 

VP-E 1.8 0.694 -0.3 1 -0.6 0.995 -1.8 0.72 1.1 0.67 2.8 0.736 

G-F -0.6 0.997 0.3 1 -2.2 0.359 0.9 0.983 -2.0 0.081 -9.3 1E-04 

P-F 0.4 0.999 0.8 0.998 0.2 1 2.6 0.324 0.6 0.974 -2.5 0.836 

VP-F 2.3 0.41 1.8 0.915 -0.1 1 2.2 0.511 0.5 0.99 -3.3 0.579 

P-G 1.0 0.963 0.4 1 2.4 0.281 1.7 0.765 2.6 0.008 6.9 0.011 

VP-G 2.9 0.19 1.4 0.963 2.1 0.396 1.3 0.906 2.5 0.014 6.0 0.041 

VP-P 1.9 0.638 1.0 0.993 -0.2 1 -0.4 1 -0.1 1 -0.9 0.998 

Dry- early Dry- mid Dry- late 

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 

  Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val 

F-E -2.7 0.875 -8.9 0.133 0.6 0.997 -0.5 1 0.7 0.976 2.5 0.507 

G-E 2.2 0.938 -0.9 1 0.9 0.983 1.2 0.986 -0.7 0.976 -3.3 0.193 

P-E 0.1 1 0.7 1 -0.5 0.999 -1.9 0.913 1.9 0.319 2.6 0.463 

VP-E -0.2 1 -4.8 0.748 -1.4 0.912 -1.6 0.958 0.7 0.97 0.6 0.999 

G-F 4.9 0.338 8.0 0.221 0.3 1 1.8 0.936 -1.4 0.666 -5.7 9E-04 

P-F 2.8 0.855 9.6 0.088 -1.1 0.96 -1.4 0.977 1.2 0.787 0.1 1 

VP-F 2.4 0.91 4.1 0.847 -2.0 0.68 -1.1 0.993 0.0 1 -1.9 0.76 

P-G -2.1 0.95 1.6 0.998 -1.4 0.893 -3.1 0.549 2.6 0.061 5.8 7E-04 

VP-G -2.4 0.91 -3.9 0.875 -2.3 0.531 -2.8 0.658 1.4 0.643 3.8 0.077 

VP-P -0.3 1 -5.4 0.632 -0.9 0.988 0.3 1 -1.2 0.807 -2.0 0.719 

  
Near Normal- early Near Normal- mid Near Normal- late 

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 

  Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val 

F-E -2.4 0.119 -2.2 0.164 -0.1 1 -0.6 0.958 3.4 0.001 4.5 0.004 

G-E -1.2 0.773 -1.0 0.898 -1.3 0.147 -1.0 0.654 -4.7 6E-07 -4.8 0.002 

P-E -0.6 0.989 -1.1 0.849 -0.8 0.693 -0.6 0.944 2.7 0.017 5.0 9E-04 

VP-E -0.8 0.951 -1.1 0.858 -0.3 0.99 -0.4 0.995 2.0 0.135 3.8 0.025 

G-F 1.1 0.834 1.2 0.768 -1.3 0.183 -0.5 0.986 -8.1 0 -9.2 0 

P-F 1.8 0.407 1.1 0.83 -0.7 0.753 0.0 1 -0.7 0.961 0.5 0.998 

VP-F 1.5 0.568 1.1 0.821 -0.3 0.996 0.2 1 -1.3 0.599 -0.6 0.995 

P-G 0.6 0.983 -0.1 1 0.5 0.926 0.4 0.991 7.4 0 9.8 0 

VP-G 0.4 0.998 -0.1 1 1.0 0.455 0.7 0.924 6.8 0 8.6 0 

VP-P -0.2 1 0.0 1 0.5 0.959 0.3 0.999 -0.6 0.972 -1.2 0.938 



 

Appendix J. TukeyHSD multiple comparisons results between each precursor soil moisture and 797 

timing classification combination by condition for both week 1 and week 2. Table displays the 798 

differences between the means along with the corresponding p values. Bolded text represents 799 

statistical significance at 0.05 significance level. 800 

  801 

  Excellent Good Fair Poor Very Poor Crop Condition 

Index 
Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 Week 1 Week 2 

  
Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val Diff p-val 

Dry-Late-Dry-Early -0.6 1 -3.2 0.558 -3.5 0.973 -5.6 0.901 2.7 0.968 8.1 0.208 1.1 0.999 -1.3 0.999 0.3 1 2.1 0.775 -1.6 0.988 -3.7 0.752 
Dry-Mid-Dry-Early 0.0 1 -2.2 0.935 -1.3 1 -0.1 1 3.2 0.939 6.1 0.66 -0.7 1 -4.8 0.384 -1.2 0.996 1.0 0.998 0.4 1 -0.4 1 
Dry-Mid-Dry-Late 0.6 0.999 1.0 0.989 2.2 0.976 5.5 0.454 0.5 1 -2.0 0.989 -1.8 0.698 -3.4 0.171 -1.5 0.712 -1.1 0.902 2.0 0.589 3.3 0.322 
NN-Early-Dry-Early 0.9 1 -1.7 0.98 -2.6 0.997 -1.8 1 1.2 1 5.0 0.816 0.2 1 -3.5 0.736 0.3 1 2.0 0.812 -0.4 1 -1.4 0.999 
NN-Late-Dry-Late -0.6 0.992 -1.2 0.799 -5.7 0.002 -2.7 0.881 2.7 0.23 0.8 1 1.7 0.281 1.2 0.947 1.9 0.041 2.0 0.021 -3.1 0.001 -2.6 0.226 
NN-Late-NN-Early -2.1 0.045 -2.8 0.008 -6.7 2E-04 -6.6 0.013 4.2 0.004 3.9 0.16 2.7 0.009 3.3 0.013 2.0 0.046 2.1 0.009 -4.4 6E-07 -4.9 6E-05 
NN-Mid-Dry-Mid 0.4 1 0.0 1 -1.8 0.985 -2.3 0.983 -0.2 1 -0.1 1 0.2 1 1.2 0.974 1.5 0.582 1.2 0.756 -1.0 0.981 -1.5 0.953 
NN-Mid-NN-Early -0.5 0.998 -0.5 0.998 -0.6 1 -0.6 1 1.8 0.708 1.1 0.997 -0.7 0.986 -0.1 1 0.0 1 0.2 1 -0.2 1 -0.5 1 
NN-Mid-NN-Late 1.6 0.032 2.2 0.003 6.1 1E-06 6.0 8E-04 -2.4 0.084 -2.8 0.2 -3.4 1E-07 -3.4 7E-05 -2.0 1E-03 -2.0 3E-04 4.2 0 4.4 4E-07 
Wet-Early-Dry-Early -0.1 1 -1.7 0.997 -3.4 0.996 -2.6 1 2.0 0.999 5.1 0.949 -0.3 1 -3.7 0.903 1.9 0.98 2.8 0.76 -1.8 0.997 -1.9 0.999 
Wet-Early-NN-Early -1.0 0.999 0.1 1 -0.9 1 -0.8 1 0.8 1 0.1 1 -0.5 1 -0.2 1 1.6 0.962 0.8 1 -1.4 0.996 -0.5 1 
Wet-Late-Dry-Late 0.2 1 -1.9 0.521 -0.5 1 -1.8 0.997 0.2 1 1.8 0.99 -0.5 1 -0.8 0.999 0.6 0.997 0.3 1 -0.2 1 -2.6 0.504 
Wet-Late-NN-Late 0.8 0.974 -0.7 0.996 5.2 0.024 0.9 1 -2.5 0.437 1.0 1 -2.2 0.122 -2.0 0.618 -1.3 0.524 -1.7 0.188 2.9 0.011 0.0 1 
Wet-Late-Wet-Early -0.3 1 -3.5 0.475 -0.6 1 -4.9 0.959 0.9 1 4.8 0.871 1.0 1 1.5 0.998 -1.0 0.999 -0.4 1 -0.1 1 -4.4 0.568 
Wet-Mid-Dry-Mid 0.8 0.997 1.4 0.939 -2.9 0.916 -3.0 0.973 -0.4 1 -2.1 0.986 0.9 0.995 1.9 0.901 1.6 0.738 1.2 0.9 -1.3 0.955 -1.0 0.999 
Wet-Mid-NN-Mid 0.3 1 1.4 0.661 -1.1 0.999 -0.7 1 -0.1 1 -2.0 0.916 0.8 0.986 0.6 0.999 0.1 1 0.0 1 -0.4 1 0.5 1 
Wet-Mid-Wet-Early 0.8 1 0.8 1 -0.8 1 -0.5 1 0.9 1 -1.1 1 0.6 1 0.7 1 -1.5 0.975 -0.6 1 0.8 1 0.5 1 
Wet-Mid-Wet-Late 1.2 0.919 4.3 5E-04 -0.2 1 4.4 0.692 0.0 1 -5.8 0.064 -0.4 1 -0.8 0.999 -0.5 0.999 -0.3 1 0.9 0.992 5.0 0.008 
 802 

 803 

 804 

 805 

 806 

 807 



 

Appendix K. Regression equations from Fig. 7 for each crop and state. 808 

  Corn Cotton Peanuts Rice Sorghum Soybeans 
Texas Yield

Est
 = 46.679(X) + 6052 N/A Yield

Est
 = 30.166(X) + 2302 N/A Yield

Est
 = 31.407(X) + 2040 Yield

Est
 = 41.017(X) - 241.38 

Louisiana Yield
Est

 = 77.071(X) + 7223 Yield
Est

 = 13.794(X) + 263 Yield
Est

 = 6.4803(X) + 4302 Yield
Est

 = 36.47(X) + 5476 Yield
Est

 = 47.884(X) + 3624 Yield
Est

 = 28.26(X) + 1759 

Mississippi N/A Yield
Est

 = 8.2863(X) + 713 N/A Yield
Est

 = 17.8(X) + 7115 Yield
Est

 = 25.825(X) + 4160 Yield
Est

 = 12.397(X) + 2775 

Alabama Yield
Est

 = 77.364(X) + 5364 Yield
Est

 = 7.1162(X) + 566 Yield
Est

 = 22.794(X) + 2559 N/A N/A Yield
Est

 = 18.875(X) + 1622 

Florida N/A N/A Yield
Est

 = 22.28(X) + 2724 N/A N/A N/A 

Georgia Yield
Est

 = 48.784(X) + 9326 Yield
Est

 = 8.6785(X) + 516 Yield
Est

 = 36.135(X) + 2530 N/A N/A Yield
Est

 = 23.428(X) + 1273 

South Carolina Yield
Est

 = 122.05(X) + 407 Yield
Est

 = 8.6415(X) + 442 N/A N/A N/A Yield
Est

 = 17.05(X) + 1137 

North Carolina Yield
Est

 = 93.772(X) + 2975 Yield
Est

 = 15.017(X) + 74 Yield
Est

 = 61.132(X) + 312 N/A N/A Yield
Est 

= 31.743(X) + 459 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 



 

Appendix L. TukeyHSD multiple comparisons results for both yield changes after the tropical 824 

cyclone and yield changes at the end of the growing season by crop, month, intensity, and 825 

precursor soil moisture classification. Table displays the differences between the means along 826 

with the corresponding p values. Bolded text represents statistical significance at 0.05 827 

significance level. 828 

Crop Month Intensity 

  TC Impact End of Year   TC Impact End of Year   TC Impact End of Year 
Crop Diff p-val Diff p-val Month Diff p-val Diff p-val Intensity Diff p-val Diff p-val 

Cot-Cor -0.7 0.958 0.1 1 May-Jun -0.2 1 0.2 1 TD-H1 4.0 3E-05 3.4 0.178 
Pea-Cor 0.0 1 -0.5 0.999 May-Jul -1.3 0.971 -0.7 1 TD-H2 3.5 0.028 2.4 0.858 
Ric-Cor 1.1 0.977 -0.4 1 May-Aug -1.4 0.951 -3.2 0.854 TD-H3 2.7 0.296 4.1 0.443 
Sor-Cor 0.4 1 -0.5 1 Jun-Jul -1.0 0.915 -0.9 0.995 TD-H4 7.6 6E-05 4.7 0.601 
Soy-Cor 0.4 0.998 1.3 0.929 Jun-Aug -1.1 0.815 -3.4 0.272 TS-TD -1.3 0.188 -2.1 0.272 
Pea-Cot 0.7 0.938 -0.6 0.997 Jul-Aug -0.1 1 -2.4 0.495 TS-H1 2.7 0.015 1.3 0.948 
Ric-Cot 1.8 0.833 -0.5 1 Sep-May -1.2 0.97 -0.4 1 TS-H2 2.2 0.386 0.2 1 
Sor-Cot 1.0 0.926 -0.6 0.999 Sep-Jun -1.5 0.581 -0.2 1 TS-H3 1.4 0.887 1.9 0.953 
Soy-Cot 1.0 0.717 1.2 0.929 Sep-Jul -2.5 0.019 -1.2 0.957 TS-H4 6.3 0.002 2.5 0.955 
Ric-Pea 1.1 0.978 0.1 1 Sep-Aug -2.6 8E-04 -3.6 0.016 H2-H1 0.5 0.999 1.1 0.997 
Sor-Pea 0.3 1 0.0 1 Sep-Oct 0.4 0.997 -0.2 1 H3-H1 1.2 0.952 -0.6 1 
Soy-Pea 0.3 0.998 1.8 0.727 Oct-May -1.7 0.927 -0.2 1 H3-H2 0.8 0.997 -1.7 0.991 
Sor-Ric -0.8 0.997 -0.1 1 Oct-Jun -1.9 0.572 0.0 1 H4-H1 -3.6 0.287 -1.2 0.999 
Soy-Ric -0.8 0.995 1.7 0.986 Oct-Jul -2.9 0.072 -1.0 0.996 H4-H2 -4.1 0.262 -2.3 0.985 
Soy-Sor 0.0 1 1.8 0.918 Oct-Aug -3.0 0.024 -3.4 0.348 H4-H3 -4.9 0.144 -0.6 1 

Wet Soil Near Normal Soil Dry Soil 

  TC Impact End of Year   TC Impact End of Year   TC Impact End of Year 
Timing Diff p-val Diff p-val Timing Diff p-val Diff p-val Timing Diff p-val Diff p-val 

Late-Early 0.4 0.982 4.1 0.434 Late-Early -1.7 0.189 -1.7 0.474 Late-Early -3.0 0.27 -1.1 0.97 
Mid-Early 2.5 0.549 2.4 0.754 Mid-Early 1.4 0.299 2.5 0.153 Mid-Early -1.1 0.85 5.3 0.59 
Mid-Late 2.1 0.219 -1.7 0.572 Mid-Late 3.1 9E-05 4.2 3E-04 Mid-Late 1.9 0.29 6.4 0.11 
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