

1 Tropical Cyclone Impacts on Crop Condition Ratings and Yield in the Coastal

2 Southern United States

4 Logan R. Bundy^{*1}, Vittorio A. Gensini¹, and Matthew S. Van Den Broeke²

¹*Department of Earth, Atmosphere and Environment, Northern Illinois University, Dekalb, IL*

⁶ *²Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE*

ABSTRACT

10 Weather causes both positive and negative impacts to agriculture making it the most
11 uncontrollable factor affecting crop production. Agriculture in the southern U.S. comprises over
12 40% of the annual commodity export from the U.S., and this region also experiences a relatively
13 large frequency of tropical cyclones. Few previous studies have investigated the effects tropical
14 cyclones have on agriculture; thus, this study quantified the role tropical cyclones have on crop
15 quality and yield in the Coastal Southern U.S. region using United States Department of
16 Agriculture National Agricultural Statistics Service crop condition data (May–October; 1986–
17 2021). The greatest changes in condition ratings were observed in fields that were favorable for
18 normal and above normal yield potential, which were downgraded to a less than normal
19 condition more favorable for some extent of loss to yield. For crops considered in excellent or
20 good condition, decreases in coverage were up to 5% which resulted in an increase in fair, poor,

Abbreviations: CCI, Crop Condition Index; NASS, National Agricultural Statistics Service; NOAA, National Oceanic and Atmospheric Administration; TC, tropical cyclone; USDA, United States Department of Agriculture

*Corresponding author: Logan R. Bundy. Current address: 118 Davis Hall, Northern Illinois University, DeKalb, IL 60115. E-mail address: lbundy@niu.edu

21 or very poor conditions (up to 3% on average). When aggregating all crops in this study (corn,
22 cotton, peanuts, rice, sorghum, soybean), the latter portion of the growing season was the most
23 detrimental to conditions after tropical cyclone impact, even under drought conditions. The
24 strongest correlation found was between crop condition declines and tropical cyclone intensity,
25 as major hurricanes were more likely to cause crop loss than any other variable. Consequently,
26 yield prospects decline after a tropical cyclone based on declines in coverage of excellent and
27 good conditions (yield declines up to 6% on average); though, crop conditions tend to recover
28 resulting in yield to also recover marginally by the end of the season (declines up to 3%).
29 Overall, these results provide essential risk management information for producers and could be
30 used to better inform resilience and sustainability decisions related to tropical cyclone impacts.

31

32 **Keywords:** crop conditions, crop yield, tropical cyclones, weather, regional climate

33 **1. INTRODUCTION**

34 Agriculture is one of the most sensitive economic sectors to weather and climate due to
35 its direct and uncontrollable impact on crop production (Andresen et al., 2001; Knox et al.,
36 2014). In particular, the South U.S. region has an especially important agricultural sector
37 producing many high valued crops such as citrus, vegetables, and several field crops including
38 soybean, hay, corn, wheat, cotton, peanuts, sorghum, and more (Hatch et al., 1999). Agriculture
39 in the South is a significant source of commerce, with over \$55 billion USD in commodity
40 production annually accounting for nearly 17% of total U.S. production (Asseng, 2013). In order
41 to maximize commodity production, continuous monitoring of crops throughout the growing
42 season provides valuable insight into crop quality, health, and productivity that stakeholders use
43 to make real-time decisions (Khaki et al., 2021).

44 Unique to the Coastal South when compared to other agricultural belts in the U.S.—and
45 something to be considered by stakeholders—is increased exposure to tropical cyclones (TCs).
46 TCs are among the most destructive natural hazards on the planet (Kunze, 2021) and can cause
47 irreparable damage to agriculture in the form of destruction to vegetation, damage to irrigation
48 facilities, and long-term loss of soil fertility (Xu et al., 2005). Perils associated with a single TC
49 event, such as the flooding, can destroy an entire season’s yield (Knox et al., 2014). Recently, the
50 USDA starting issuing hurricane-specific crop insurance and has expanded to cover all tropical
51 cyclones to provide as a financial safety net against crop losses (USDA, 2020). In terms of
52 damage, Tropical Storm Fay in August 2008 resulted in over \$250M USD in losses to agriculture
53 in northern Florida and southern Georgia, in part because 70% of the expected production value
54 was lost for vegetable crops (Flanders et al., 2008). On the extreme end, Hurricane Katrina in
55 August 2005 caused sugar cane, corn, soybean, and cotton production losses totaling

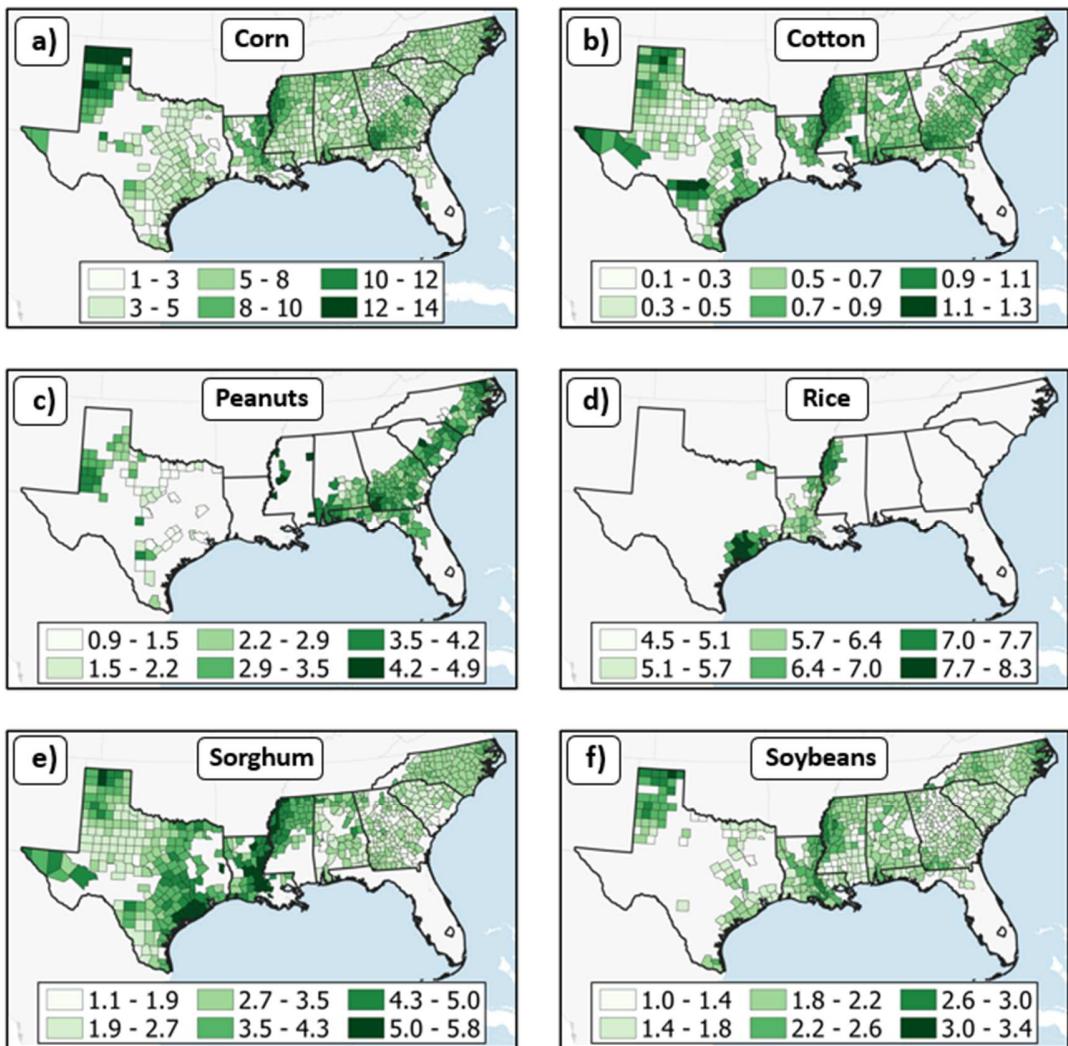
56 approximately \$1B USD (Schnepf and Chite, 2005). Other literature has investigated the
57 detrimental effects TCs have had on agricultural sectors across the globe, including China (Xu et
58 al., 2005), Bangladesh (Hossain et al., 2008), Central America (Boucher et al., 2001), and the
59 Caribbean Islands (Bertinelli et al., 2016), as well as TC impact based on land use and
60 topographic features (Philpott et al., 2008) and the effects on agriculture from an economic
61 standpoint under a changing climate (Chen and McCarl, 2009). In terms of a changing climate,
62 increasing TC frequency and intensity has been debated considerably within the context of
63 global climate change and natural variability (Emanuel, 2005; Webster et al., 2005; Landsea et
64 al., 2006; Shepherd and Knutson, 2007, Kossin et al., 2010; Knutson et al., 2010; Seneviratne et
65 al., 2012; Villarini et al., 2012; Weinkle et al., 2012; Knutson et al., 2013), which emphasizes the
66 importance of investigating tropical cyclone impacts in the Coastal Southern U.S. Despite this
67 debate, TC impacts from heavy rain and damaging winds are costly and have a varying response
68 depending on the agroecosystem and its vulnerability (Perotto-Baldviezo et al., 2004; Philpott et
69 al., 2008). Therefore, if tropical cyclone frequency and/or intensity continues to increase in the
70 future (Emanuel, 2007; Bender et al. 2010; Bell et al., 2011; Tron and Snyder, 2012; Landsea
71 and Franklin, 2013), the implications to agriculture in the Coastal Southern U.S. will amplify.

72 Heavy rain from TCs can lead to inundated fields resulting in disease and root rotting as
73 daily rainfall amounts from TCs average between 150–350mm across all aggregated cyclone
74 strength classifications (Cerveny and Newman, 2000). Heavy rainfall effects to agricultural
75 fields also holds true for non-TC excess precipitation events (Knox et al., 2014; Bundy et al.,
76 2022). In general, flooding associated with landfalling TCs has claimed a large economic and
77 societal toll with several billion dollars in damage annually to the U.S. (e.g., Rappaport, 2000;
78 Pielke et al., 2008; Changnon, 2008; Mendelsohn et al., 2012; Peduzzi et al., 2012). Despite

79 these repercussions, there is limited published literature about the inland flooding from TCs
80 when compared to improving the understanding of damage caused by storm surge and wind
81 (e.g., Elsberry, 2002; U.S. Department of Commerce, 2011; Zandbergen, 2009; Villarini et al.,
82 2014). This is especially true when it comes to TC-induced rainfall impacts on crop quality.
83 Flooded land also impacts soil structure (Kopyra and Gwo d, 2004; Pengthamkeerati et al., 2006;
84 Haddad et al., 2013; Kraur et al., 2019) and if there is little soil integrity or strength, then crops
85 are more susceptible to being damaged by wind (Cleugh et al., 1998). In general, excessive
86 winds from TCs pose a threat for greensnap or root lodging, resulting in downed fields, a
87 reduction in crop quality, and ultimately a loss in production (Cleugh et al., 1998; Lindsey et al.,
88 2021). Even with these TC perils, previous literature (e.g., Rodgers et al., 2001; Knight and
89 Davis, 2007) has noted that the contribution of TC-induced rainfall has been overlooked, as
90 rainfall from TCs can be essential for the success of the agricultural enterprise in the Coastal
91 South U.S. region. TC-induced rainfall comprises between 5–15% of the growing season rainfall
92 total for much of the region (Knight and Davis, 2007). In addition, if all TC-induced rainfall was
93 removed in a given season, soil moisture deficits in the Southern U.S. would increase by
94 approximately 20–30%, on average (Knight and Davis, 2007). The timing of TC rainfall is likely
95 an important contributor to whether it would benefit a crop, and there is a risk versus reward
96 factor when it comes to beneficial TC rainfall versus potential wind damage. Neither of these are
97 well understood and would benefit from a quantitative analysis.

98 A widely used methodology to perform continuous monitoring of crops is through the
99 United States Department of Agriculture (USDA) National Agricultural Statistics Service
100 (NASS) Crop Progress report. The report is crucial for speculators in agriculture future markets
101 (Bain and Fortenberry, 2013; Lehecka, 2014). Crop Progress reports released by the USDA

102 NASS have been argued to capture the complexities of assessing the “status” of a crop better
103 than any model or remote sensing retrieval (Begueria and Maneta, 2020) and have had
104 statistically significant correlations with weather/climate variables and yield (Bundy and
105 Gensini, 2022). Therefore, with existing discrepancies in previous literature regarding whether
106 TCs are overall beneficial, detrimental, or perhaps both to agriculture, this study aimed to
107 quantify historical TC impacts on crop quality and yield in the Coastal South U.S. region. In
108 particular, the goals of this study were to 1) quantify the impacts TCs have had on conditions
109 across multiple field crops, 2) quantify the intermonthly impacts TCs may have had on crop
110 conditions, 3) characterize how TC intensity and precursor soil moisture impacted crop
111 conditions, and 4) quantify historical yield changes based on the crop conditions. A
112 comprehensive overview of crop quality and yield impacts by TCs using USDA NASS data has
113 not been performed to date. The novel results herein can be used by farmers, insurers,
114 agronomists, and other stakeholders to aid in the decision-making process regarding management
115 and resilience when it comes to TC impacts on regional agriculture.


116

117 **2. MATERIAL AND METHODS**

118 ***2.1. Crop condition data***

119 Weekly USDA NASS Crop Progress crop condition data were obtained from May–
120 October, 1986–2021, for eight states we define as the Coastal South U.S.: Texas, Louisiana,
121 Mississippi, Alabama, Georgia, Florida, South Carolina, and North Carolina (USDA, 2022).
122 General crop condition data includes corn, cotton, peanuts, rice, sorghum, and soybean as they
123 are the most widespread in terms of yield (Fig. 1), production (Appendix A), and acreage

124 (Appendix B) within this region. Condition data varied temporally by crop and by state—not all
125 states had the same number of years of data for each crop examined.

126
127 **Fig. 1.** Average annual yield (kg ha⁻¹ in thousands) at county-level for each crop examined in the
128 Coastal Southern U.S. region (1986–2021). Locations within the study area without a county
129 outline did not have any production for the respective crop. (*Color not needed for print*)
130
131 For example, corn condition data for Texas are available from 1986–present, though for
132 Louisiana, Alabama, and Georgia, corn condition data only date back to 2007. Cotton, soybean,

133 sorghum, and rice data were available for all states from 1986–present, whereas peanut data were
134 only available dating back to 1996. It is important to emphasize that a consistent sample size by
135 state and/or crop was not necessarily important for this study, as attaining the greatest number of
136 TC impact cases possible for examination was prioritized.

137 Weekly data collected by the USDA within each county are summarized and weighted by
138 acreage to inform state-level data. Thus, public data via the USDA NASS are available only at
139 state-level aggregation. Crop condition data are not released at the county level in part to protect
140 the confidentiality of growers whose operations may comprise much of the production in a given
141 county (USDA, 2021). These data are gathered via a weekly survey by reporters consisting of
142 largely extension agents and Farm Service Agency staff (USDA, 2016). Approximately 3,600
143 respondents are asked to report for the entire week ending on Sunday, regardless if they submit
144 their report on Friday, Saturday, or Sunday (USDA, 2021). For reports submitted prior to the
145 Sunday reference date, a degree of uncertainty is introduced by projections for weekend changes
146 in progress and condition. By the end of the 2020 season, over 95% of the data were being
147 submitted through an online portal. As a result, most reports were submitted on Monday
148 morning, significantly reducing projection uncertainty (USDA, 2021). For the general crop
149 conditions portion of the report, reporters are asked to estimate the percent of their crop in
150 excellent, good, fair, poor, and very poor condition. General crop condition categories defined by
151 the USDA are as follows:

- 152 • *Excellent* - Yield prospects are above normal. Crops are experiencing little or no stress.
153 Disease, insect damage, and weed pressures are insignificant.
- 154 • *Good* - Yield prospects are normal. Moisture levels are adequate and disease, insect
155 damage, and weed pressures are minor.

- *Fair* - Less than normal crop condition. Yield loss is a possibility, but the extent is unknown.
- *Poor* - Heavy degree of loss to yield potential which can be caused by excess soil moisture, drought, disease, etc.
- *Very Poor* - Extreme degree of loss to yield potential, complete or near crop failure.

The Crop Condition Index (CCI) was calculated for each report through the following equation (Bain and Fortenberry, 2013, 2017):

CCI = %Excellent (1.0) + %Good (0.75) + %Fair (0.50) + %Poor (0.25) + %Very Poor (0)

This weighted index provides a value summarizing the current state of weekly conditions from the five crop conditions. The index ranges from [0, 100], with an index value of 100 corresponding to 100% of the surveyed crop being reported in excellent condition (Bain and Fortenberry, 2013, 2016). The 0 weight on the very poor condition percentage is used to eliminate the effect abandoned acres has if used for a yield forecast (Fackler and Norwood, 1999;

Jorgensen and Diersen, 2014). We note there are other ways one might use the crop condition

information provided by the USDA. For example, the USDA use their own weighted index,

ranging from [1, 5] that combines all conditions together (similar to the Bain and Fortenberry

(2013) approach) where an index of 1 corresponds to 100% of the crop being in very poor

condition while an index of 5 corresponds to 100% of the crop being in excellent condition

(Rosales, 2021). Other approaches include adding the percent of crop rated excellent and per-

rated good and use that index to model corn and soybean yields (Irwin and Good, 2017a, 2017b;

Irwin and Hubbs, 2018). However, Bain and Fortenberry (2016) argue that only using the good

and excellent rating information is a disadvantage since responses from changes in the bottom

three categories (fair, poor, very poor) are not considered. Also, the Bain and Fortenberry (2016)

179 CCI has been proven to represent the overall crop condition and use as an explanatory variable in
180 modeling crop yields and production (Fackler and Norwood, 1999; Jorgensen, 2014; Jorgensen
181 and Diersen, 2014; Bundy and Gensini, 2022).

182 **2.2. *Crop yield data***

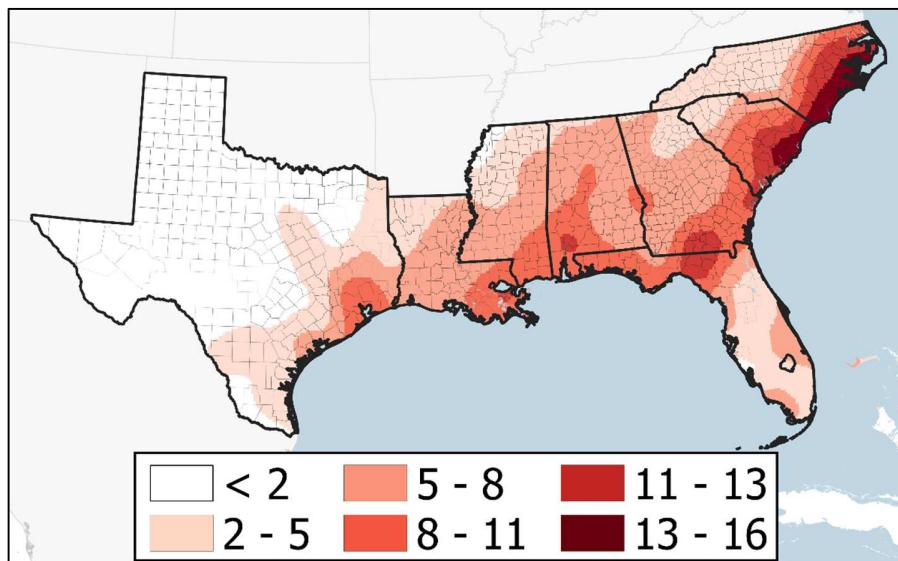
183 Crop yield data were also obtained from the USDA NASS from 1986–2021 for each
184 Coastal South state for each crop examined (USDA, 2022). A linear trend adjustment was
185 computed for each state for each growing season to eliminate the long-term trends of yield
186 within each state. The linear trend was calculated dating back to when the crop condition data
187 were first available for each state and crop in order to keep the comparison between conditions
188 and yield consistent. The trend was computed by calculating the least-squares regression slope
189 between the yield and the year index. Least-squares regression was used across all crops and
190 states since each trend was approximately linear. This slope value was used to then detrend the
191 yield data for each state and crop. The equation (Equ 1) used to detrend the yield for each crop
192 and state is as follows (Irwin and Good, 2017a; Bundy and Gensini, 2022):

193
$$\text{Yield}_{\text{adj}} = \text{Yield}_t + [\beta_1 (x_i - x_n)] \quad 1$$

194 where Yield_t is the observed yield for year t . β_1 is the rate of change in the data, x_i is the total
195 number of years used, and x_n is the year index. Yield for crops was collected from the USDA
196 NASS database as follows: cotton in $\text{lb} \cdot \text{ac}^{-1}$, corn in $\text{bu} \cdot \text{ac}^{-1}$, peanuts in $\text{lb} \cdot \text{ac}^{-1}$, rice in $\text{lb} \cdot \text{ac}^{-1}$,
197 sorghum in $\text{bu} \cdot \text{ac}^{-1}$, and soybean in $\text{bu} \cdot \text{ac}^{-1}$. These units were converted to $\text{kg} \cdot \text{ha}^{-1}$ to keep
198 yield units consistent across the analysis. While the use of the USDA NASS database has proven
199 reliable in a peer-reviewed research setting (e.g., Bundy and Gensini, 2022), there are
200 shortcomings of the database worth noting. First, between the use of the crop conditions and
201 yield, the statistics may be impacted by the growth stage of the crop. Hence, more crop

202 deterioration/yield loss may occur to crops that are further along in their growing cycles in more
203 southern location than further north within a state. With this, the data at state-level aggregation is
204 a limitation. Second, these statistics do not account for the practice of double-cropping which
205 may impact the timing of the planting date, growth cycle, and in turn, the variability in crop
206 conditions and yield. Finally, the comparison between crop conditions and yield in the USDA
207 NASS database cannot account for irrigation. In other words, these data are not separated by
208 rainfed and irrigated crops which may also impact variability in the results.

209 **2.3. Tropical cyclone data**


210 TC data were compiled from the National Oceanic and Atmospheric Administration
211 (NOAA) Historical Hurricane Tracks database from May–October, 1986–2021 (NOAA, 2021).
212 Tropical depressions (TD), tropical storms (TS), and Category 1 (H1), 2 (H2), 3 (H3), and 4 (H4)
213 hurricanes were obtained for this analysis. No Category 5 hurricanes impacted crop area during
214 the 1986–2021 study period. It is important to note that there were Category 5 hurricanes that
215 made landfall during the study period, and there were some cases where hurricanes were
216 upgraded to a Category 5 hurricane after the storm. These two examples include Hurricane
217 Andrew and Michael as they were not initially considered Category 5 hurricanes at landfall
218 (Landsea et al, 2004; NOAA, 2019). Nonetheless, these two storms were not Category 5
219 hurricanes once they went over cropland. The specific number of cases for each state, crop, and
220 type of TC impacting each state were sorted (**Table 1**). TCs were classified based on their
221 maximum intensity when affecting the respective crop area in any state in the study domain. The
222 cyclone center of circulation (**Fig. 2**) needed to cross over at least one county with crop
223 production (**Fig. 1**) to be counted as “impacting crop area” for this analysis.

224

225 **Table 1.** Report totals for each Coastal Southern U.S. state divided by crop type and tropical
226 cyclone intensity (1986–2021).

State	Totals by Crop Type						Totals by Tropical Cyclone Intensity							
	Corn	Cotton	Peanuts	Rice	Sorghum	Soybean	Total	TD	TS	H1	H2	H3	H4	Total
Texas	25	25	3	16	24	4	97	4	14	6	2	2	1	29
Louisiana	1	9		15	9	16	50	6	4	5		1	1	17
Mississippi	3	15	3	3	3	15	42	10	5	1				16
Alabama	5	35	24			17	81	20	7	4	1	2	1	35
Florida		6	28				34	10	24	3	1	3	1	42
Georgia	11	30	21			16	78	15	16	1				32
South Carolina	5	20	11			12	48	11	9	3			1	24
North Carolina	30	23	22			29	104	9	13	4	3	2		31
Total	80	163	112	34	36	109	534	85	92	27	7	10	5	226

227

228

229 **Fig. 2.** Kernel density of all tropical cyclone center tracks used in this study (1986–2021).

230 Cropland represented by outlined counties with darker outlines representing higher production.

231 *(Color not needed for print)*

232

233 **2.4. Soil moisture data**

234 Palmer Modified Drought Index (PMDI) data were used as a measurement of soil
235 moisture (NWS, 2011). The PMDI attempts to measure the duration and intensity of long-term

236 drought-inducing circulation patterns and is the operational version of the Palmer Drought
237 Severity Index (PDSI). Long-term drought is cumulative, so the intensity of drought during the
238 current month is dependent on the current weather patterns plus the cumulative patterns of
239 previous weeks, but the PMDI can respond fairly rapidly even if it cannot totally capture the
240 instance of flash droughts (Palmer, 1965; NCEI, 2021). Therefore, PMDI values were collected
241 for each report for the week prior to a TC impacting the cropping area (week 0). PMDI values
242 greater than or equal to 2.0 represented “wet” conditions in this research, values less than or
243 equal to -2.0 represented “dry” conditions, and values between -1.99 and 1.99 represented near
244 normal conditions (Palmer, 1965). These data are available at the climate division level (NOAA,
245 2022), thus, PMDI data were gathered only for the divisions that were impacted by the
246 circulation center of the TC represented in **Fig. 2** and if there was crop production in that
247 division at the time of the TC. These data were then averaged for each state to inform the
248 precursor PMDI value/classification for each TC case. In addition, the soil moisture analysis was
249 separated into different portions of the growing season: May and June represented the early
250 portion of the growing season, July and August represented the middle portion, and September
251 and October represented the late portion.

252 **2.5. Analysis**

253 Crop condition data were gathered for the week before TC impact (week 0), the week of
254 the TC impact (week 1), and the week after the TC impact (week 2). Week 1 and week 2
255 represent the impacts TCs may have on crops. These two weeks were collected as extension
256 agents conducting the crop condition survey may see more of the possible slower developing
257 impacts from the TC in week 2, or perhaps, more recovery. Also, it is possible that week 2 may
258 be the only time to adequately assess the crop in severe cases where more direct results of the TC

259 may have needed to be dealt with first during week 1 or immediately after the TC. All in all,
260 assessing the week of the TC impact and week after will likely represent most of the effects TCs
261 bring upon crops while limiting the potential weather effects after the TC. The percent change
262 for each condition category (excellent, good, fair, poor, very poor) was calculated between week
263 1 and week 2 from week 0. The weekly change value amongst the crop condition categories
264 represents one report. A single TC can have multiple reports depending on the intensity changes,
265 and how many states/crops it impacts. For example, Dennis in July 2005 has six different reports
266 as outlined below:

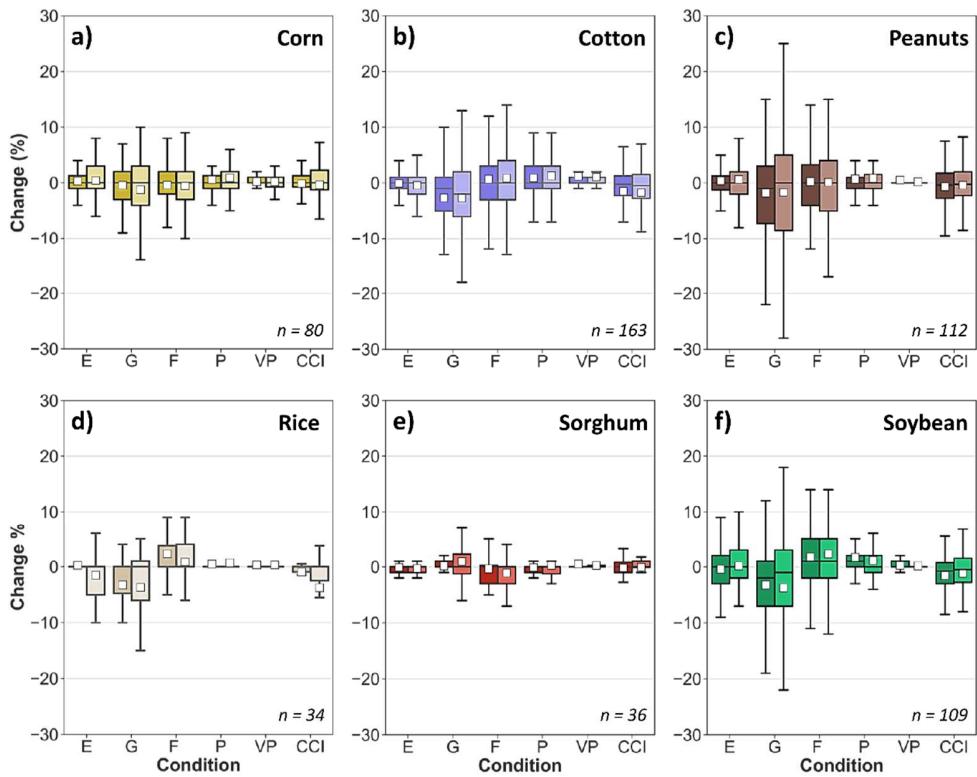
267 • Category 3 Hurricane Dennis affected 1) Florida peanuts.
268 • Downgraded to a tropical storm and affected 2) Alabama cotton and 3) Alabama peanuts.
269 • Further downgraded to a tropical depression and affected 4) Mississippi cotton, 5)
270 Mississippi rice, and 6) Mississippi soybean.

271 In total, there were 534 reports each for week 1 and week 2, making the entire dataset consist of
272 1068 reports. To examine changes, or differences between crop condition movements, a
273 combination of three assessments were made. This includes 1) computing how many
274 reports/cases resulted in a decrease or increase in excellent, good, fair, poor, very poor condition,
275 and then ultimately the CCI, 2) visually assessing the interquartile distribution of the box and
276 whisker plots for each condition, and 3) computing the statistical differences between the
277 averages in each condition change. To determine this third step, the Tukey HSD (“honestly
278 significant difference”) multiple comparison test was computed at the 95% confidence level.
279 Tukey HSD determines if the relationship between two sets of data is statistically significant in
280 terms of their difference in means (Ott and Longnecker, 2015). The TukeyHSD test results are
281 presented in the Appendices section.

282 For yield assessment, week 1 and week 2 CCI was averaged and used within each
283 state/crop's unique least squares regression equation to model weekly crop yield. The least
284 squares regression equation was computed based on the annual average CCI which has been
285 proven to be a useful metric when quantifying crop yield throughout the growing season (Bundy
286 and Gensini, 2022). The model equation for this portion of the analysis is specified below (Equ
287 2):

288
$$\text{Yield}_{\text{Est}} = \widehat{\beta_1} \cdot X + \widehat{\beta_0} \quad 2$$

289 where $\widehat{\beta_1}$ is the least squares regression slope, X is the current week's CCI, and $\widehat{\beta_0}$ is the Y-
290 intercept of the regression equation. If the coefficient of determination was not statistically
291 significant to the 95% confidence level, then those yield data for the respective state and crop
292 were not used. States and crops not used in the yield analysis included Texas cotton, Texas rice,
293 Mississippi corn, Mississippi rice, Mississippi peanuts, Florida cotton, and South Carolina
294 Peanuts, which consists of 13% of the reports (67 of 534). Yield was modeled based on the CCI
295 for week 0 and the average of week 1 and week 2 CCI to determine the yield change percentage.
296 Yield change percentages were also calculated between week 0 and the actual end of year yield.


297

298 **3. RESULTS**

299 ***3.1. Condition changes by crop***

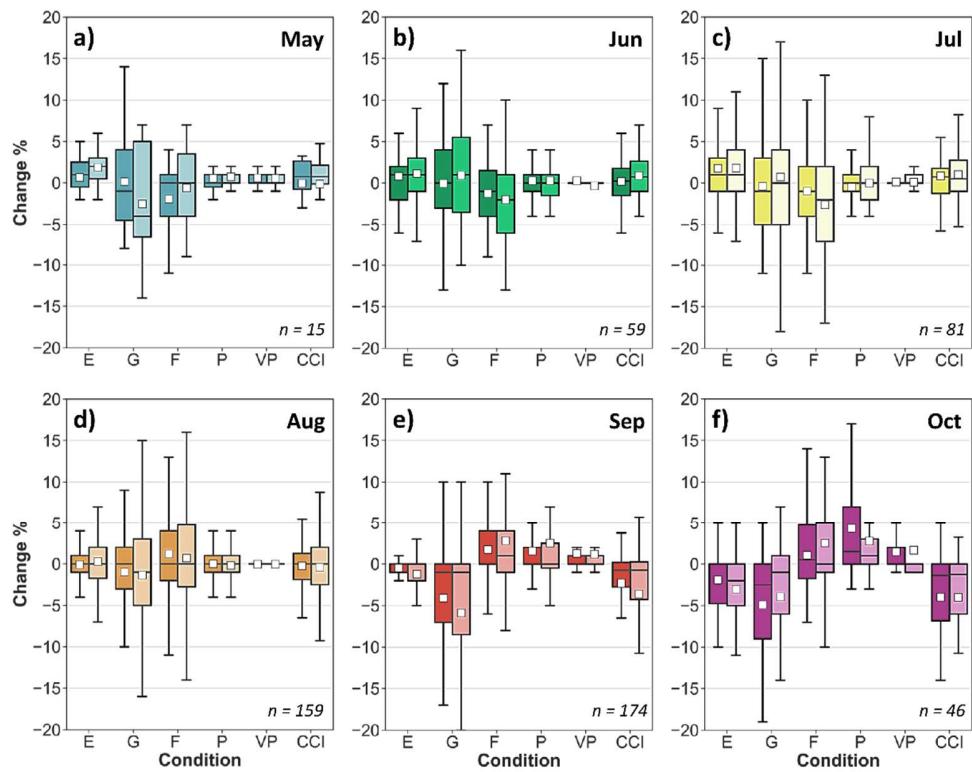
300 The largest movements in week 1 and 2 coverage changes were reflected in crops
301 considered in good and fair condition (**Fig. 3**). This is in large part due to crops considered in
302 good condition represented nearly half the total crop area across the Coastal Southern U.S., while
303 conditions considered fair represented 30% of the total crop area on average since 1986 (USDA,
304 2022). Thus, with over 3/4 of a given crop area for each state in good or fair condition, it is more

likely for these conditions to have some of the most notable weekly changes after any weather hazard impact. For most crops after TC impact in weeks 1 and 2, the decrease on average for excellent and good conditions resulted in an increase in fair conditions, and to a lesser extent, an increase in poor and very poor conditions. This is supported by a Pearson correlation coefficient average between excellent versus CCI and good versus CCI of 0.63, and an average Pearson correlation coefficient between fair versus CCI, poor versus CCI, and very poor versus CCI of -0.56. Both correlations are considered large in terms of the strength of the relationship (Cohen, 1988). In other words, crops that were considered optimal for normal or above normal yield potential (excellent or good conditions) were downgraded to a condition where yield loss is a possibility (fair conditions) or downgraded to a condition more conducive of a heavier degree of loss to yield potential (poor or very poor). Consequently, this resulted in a marginal decrease in the CCI up to 4% on average for all crops in week 1 and week 2. For corn, cotton, peanuts, rice, and soybeans, the average decrease good conditions for weeks 1 and 2 were consistent between 3–5% (**Figs. 3a, 3b, 3c, 3d, 3f**). For these crops that were in fair or poor condition, averages were somewhat variable from crop-to-crop, with resulting increases up to 3%. Differences in averages between changes in good and fair conditions were statistically significant at the 95% confidence level for cotton, rice, and soybeans (Appendix C). Between good and poor or very poor conditions, the differences in average changes were statistically significant for all crops except corn and sorghum (Appendix C). Sorghum was the only crop to not follow the general decreasing good condition and increasing fair and poor condition (**Fig. 3e**). Conditions for sorghum were generally unchanged until week 2 when good condition coverage increased and fair condition coverage decreased on average. The distribution for both weeks, though, favored an increase in good conditions and a decrease in fair conditions.

328

329 **Fig. 3.** Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from
 330 week 0 for each condition after a tropical cyclone impacted the respective crop area. Each box
 331 and whisker present a six number summary: whiskers represent the 1.5 multiple of the inner-
 332 quartile range (outliers considered but not included in plots); boxes represent first quartile (25th
 333 percentile) and third quartile (75th percentile) values; black line horizontal within boxes
 334 represent the median value; white squares represent the mean value. (*Color not needed for print*)
 335

336 For these crops that were in fair or poor condition, averages were somewhat variable from crop-
 337 to-crop, with resulting increases up to 3%. Differences in averages between changes in good and
 338 fair conditions were statistically significant at the 95% confidence level for cotton, rice, and All
 339 crops analyzed in this research displayed a decrease in the CCI on average and did not have


340 statistically significant differences between condition changes when comparing each crop and
341 condition combination (Appendix D), which suggests a generally homogenous reaction amongst
342 crops to TC impact even with the differences in sample size (**Table 1**). Therefore, the similar
343 CCI changes to TC impacts justifies aggregating all crops in this research together for analysis in
344 the following sections.

345 While the average changes in crop conditions do display statistical differences amongst
346 the different condition categories, the entire distribution of the box and whiskers need to be
347 discussed as there is a considerable amount of variability in terms of weekly changes. Hence, the
348 result of a TC impact on crop conditions did not always result in detrimental changes. In fact,
349 only half of the cases overall resulted in a decrease in the CCI. As a whole, weekly changes in
350 good conditions possessed a standard deviation of nearly 10%, while fair was 8% and the
351 remaining conditions (excellent, poor, very poor) ranged between 3–5%. This suggests that other
352 factors (e.g., time of season, TC strength, precursor soil moisture) may contribute significantly to
353 variability across all crops.

354 **3.2. Condition changes by month**

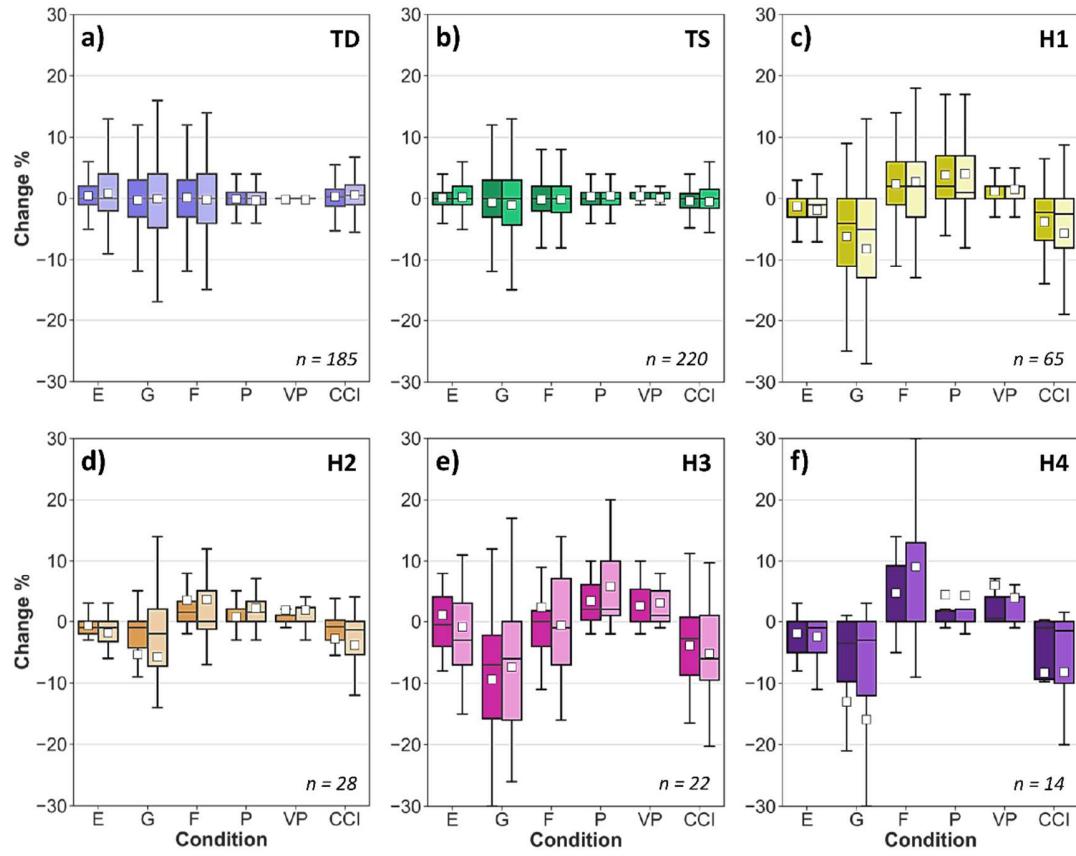
355 Based on the timing of a TC with respect to the phenological stage of the crop, examining
356 condition changes by month revealed essential information regarding the timing risk of TC
357 impacts on agriculture (**Fig. 4**). When aggregating all crops examined in this study together, the
358 month of May showed only marginal evidence of an improvement in conditions (**Fig. 4a**). This is
359 supported by a decrease in good and fair conditions while there was a subtle increase in
360 excellent, poor, and very poor conditions; overall these subtle changes did not lead to any net
361 change in the CCI on average. However, the median change and overall interquartile distribution
362 does favor marginal improvement. In addition, 68% of the cases resulted in an increase in the

363 CCI during May. TCs resulted in subtle improvements in crop conditions overall in June and
 364 July as well (**Figs. 4b, 4c**). This is reflected in the CCI changes in week 1 and week 2, which
 365 increased up to 2% on average. Notably, conditions considered fair were upgraded to good or
 366 excellent in June and July as the differences in averages for good/excellent conditions were
 367 statistically different than fair and poor conditions (Appendix E).

368
 369 **Fig. 4.** Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from
 370 week 0 for each condition after tropical cyclone impact separated by month. Each box and
 371 whisker present the same six number summary as described in Fig. 3. (*Color not needed for
 372 print*)
 373

374 For both months, 60% of the cases resulted in an improvement in crop conditions. For August,
375 CCI was practically unchanged in week 1 and week 2 with no statistically significant differences
376 between condition averages. Also, nearly half of the cases resulted in an increase or decrease in
377 crop conditions, and thus, there was not strong evidence to support any major change in crop
378 conditions due to TC impact in August.

379 August served as somewhat of a transition period for change in crop conditions. In the
380 latter portion of the growing season, September and October displayed the largest movements in
381 crop conditions, suggesting these two months are the most important for crop conditions when it
382 comes to TC impact (**Figs. 4e, 4f**). This is especially true in the good and fair condition
383 movements as, on average, weeks 1 and 2 good conditions decreased by nearly 5% while fair
384 conditions increased by 1–3%. In addition, excellent conditions decreased on average by up to
385 3% while poor and very poor conditions increased between 2–4% on average for both week 1
386 and week 2 changes. The changes in excellent and good conditions for week 1 and week 2 within
387 September and October were statistically significantly different than the changes in fair, poor,
388 and very poor conditions with 95% confidence (Appendix E). When comparing September and
389 October with May, June, July, and August, statistically significant differences across condition
390 changes were observed (Appendix F). The result for both months was a decrease in the CCI by
391 3–4%, which was the strongest crop condition change signal for the growing season. This is also
392 supported by both interquartile ranges for these months being at or below 0 for the CCI with
393 nearly 66% of cases resulting in a decline in crop conditions.


394 Even when aggregated by month, there was still a respectable amount of variability. Still,
395 monthly aggregation was a statistically significant predictor of crop condition changes after TC

396 impact, suggesting crop phenology is important when assessing the specifics of TC impacts on
397 field crops in the Coastal South.

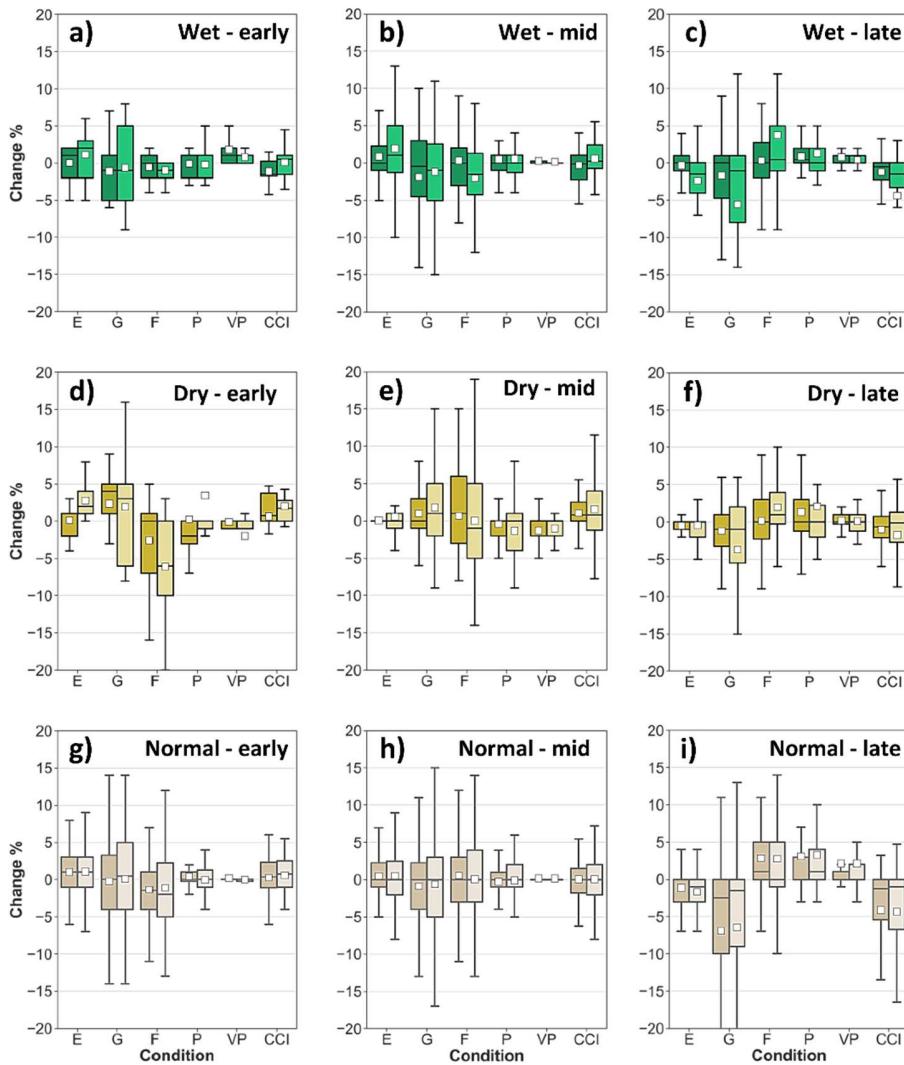
398 ***3.3. Condition changes by tropical cyclone intensity***

399 In addition to growing season timing, TC intensity also plays a significant role in crop
400 condition changes. Overall, the strength of a TC was the most statistically significant predictor of
401 crop condition changes when including all variables. When all crops are aggregated together,
402 tropical depressions and tropical storms did not tend to impact average conditions (**Figs. 5a, 5b**).
403 Furthermore, the average CCI had nearly 0% change in both weeks 1 and 2, and there were no
404 statistically significant differences between the averages of condition changes (Appendix G).

405 Once TCs reached hurricane status, noteworthy changes in conditions were observed as
406 statistically significant changes between excellent/good and fair/poor/very poor were observed
407 (Appendix G). For category 1 and category 2 hurricanes, crops rated in good condition decreased
408 in week 1 and week 2 between 5–8%, which consequently resulted in an increase in fair, poor,
409 and very poor condition coverage ranging between 1–4% on average (**Figs. 5c, 5d**). The
410 interquartile distributions of the box and whisker plots for both category 1 and 2 hurricanes were
411 near or below 0% change in excellent and good conditions. Meanwhile, the interquartile
412 distribution for poor and very poor conditions were near or above 0% change. As a result, the
413 CCI interquartile distribution was at or below 0%. Nearly 66% of all cases resulted in a decrease
414 in crop conditions after category 1 or 2 hurricane impact. When hurricanes reached “major
415 hurricane” status at category 3 or higher, the resulting detrimental crop condition changes were
416 more substantial (**Figs. 5e, 5f**).

417

418 **Fig 5.** Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from
 419 week 0 for each condition after tropical cyclone impact separated by tropical cyclone strength.
 420 Each box and whisker present the same six number summary as described in Fig. 3. (*Color not*
 421 *needed for print*)


422

423 As is the general trend with the other results, a general decrease in excellent and good conditions
 424 resulted in an increase in fair, poor, and very poor conditions for category 3 and category 4
 425 hurricane impacts. For category 3 hurricanes, the decrease in good conditions in week 1 neared
 426 10%. This decrease was even higher for category 4 hurricanes (13%). As a result, the CCI
 427 decrease after being impacted by category 3 or category 4 hurricanes was near 5% and 9%

428 respectively for both week 1 and week 2. In total, 70% of the cases for category 3 hurricane
429 impact resulted in a decline in crop conditions while 83% of the category 4 hurricane cases
430 resulted in a decline. The interquartile distribution for category 3 and 4 hurricanes was also
431 similar to category 1 and 2 impact, which further emphasizes the significant relationship between
432 TC strength and crop condition changes. Also, when comparing the changes for each condition
433 with each TC strength combination, statistically significant differences were noted when
434 comparing the condition changes for hurricanes against tropical storms and depressions
435 (Appendix H).

436 ***3.4. Condition changes under precursor soil moisture conditions***

437 Soil moisture conditions prior to TC impact along with the time of the growing season
438 also plays a vital role in whether crops may benefit from TCs. For instance, during certain
439 phenological stages of crop development, depending on the status of the crop (e.g., dry, wet),
440 TCs may yield positive or negative impacts on crop conditions (**Fig. 6**). Precursor (week before
441 TC impact) PMDI conditions were also a statistically significant predictor of crop condition
442 changes. Under precursor PMDI conditions considered wet ($\text{PMDI} \geq 2.0$), on average, crop
443 conditions did not improve in any part of the growing season (**Figs. 6a, 6b, 6c**). In the early
444 portion of the growing season (May and June), TCs negatively impacted crop conditions when
445 precursor PMDI conditions were wet (**Fig. 6a**). Thus, fields that were at least already at least
446 moderately moist and became saturated after a TC did not typically improve the quality of the
447 crop. This is supported by the statistically insignificant differences between excellent and good
448 conditions compared to fair, poor, and very poor conditions to the 95% confidence level
449 (Appendix I). During the middle portion of the growing season, there was no statistical support
450 to suggest TCs improve or deteriorate crop conditions, on average (**Fig. 6b**; Appendix I).

451

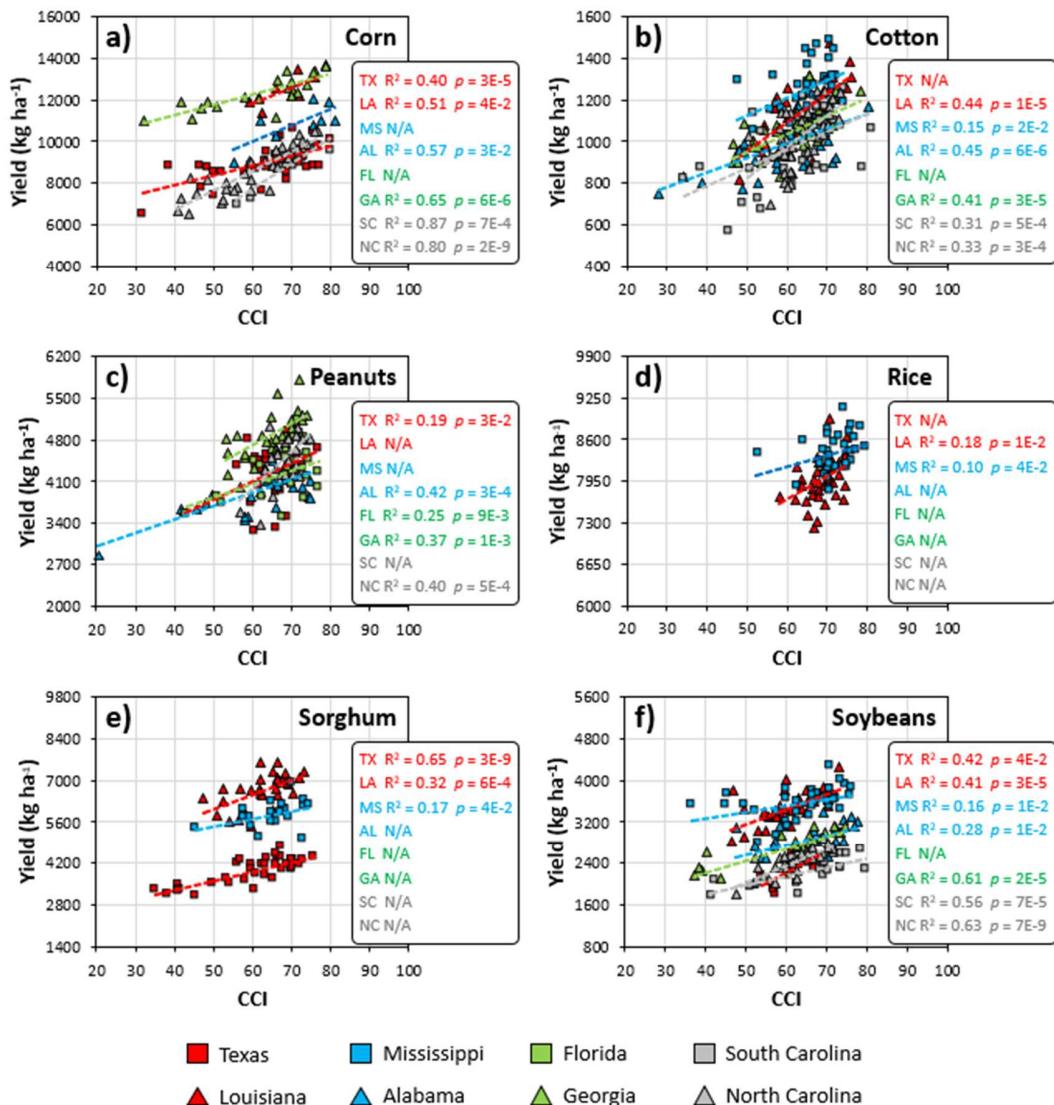
452 **Fig. 6.** Box and whisker plots of all week 1 (darker hue) and week 2 (lighter hue) deltas from
 453 week 0 for each condition after tropical cyclone impact separated precursor soil moisture
 454 condition and seasonal timing. Each box and whisker present the same six number summary as
 455 described in Fig. 3. (*Color not needed for print*)

456

457 Therefore, if precursor soil moisture conditions were already optimal during the critical
 458 reproduction period of the growing season, conditions remained stable after a TC impact.

459 By the latter portion of the growing season under wet precursor conditions, crops under excellent
460 or good conditions decreased in coverage resulting in an increase in coverage of crops in fair,
461 poor, or very poor condition on average (**Fig. 6c**). This was supported by the statistically
462 significant differences between excellent (more so in week 2) and good conditions compared to
463 fair, poor, and very poor conditions (Appendix I). As a result, the decline in favorable conditions
464 resulted in a decrease in the CCI for both week 1 and week 2 on average by 2–4%.

465 Under dry precursor soil moisture conditions, or conditions that are at least considered in
466 a moderate drought ($\text{PMDI} \leq -2.0$), TCs did benefit crop conditions overall in the early and
467 middle portions of the growing season (**Figs. 6d, 6e**). This was reflected by subtle differences
468 between excellent with good conditions as compared to fair conditions in the early portion of the
469 growing season, which resulted in a CCI increase between 1–3%. During the middle portion of
470 the season, the greatest movements were observed in good conditions (increase in coverage) and
471 in poor and very poor conditions (decrease in coverage) resulting in a CCI increase between 2–
472 3%. However, by the latter portion of the growing season, even under drought conditions, TCs
473 caused crops that were in excellent and good condition tend to be downgraded to fair and poor
474 condition on average (**Fig. 6f**). These were the only changes in the growing season under dry
475 precursor soil moisture conditions that were statistically significant to the 95% confidence level
476 (Appendix I). The result was a decrease in the CCI between 2–3%.


477 Near-normal precursor soil moisture conditions were present in 63% of the cases in this
478 study. When these conditions were present prior to TC impact, after the TC, crop conditions
479 generally remained stable on average as there were no statistically significant differences
480 between conditions for week 1 and week 2 in the early and middle portion of the growing season
481 (**Figs. 6g, 6h**; Appendix I), resulting in no change to CCI. It was not until the latter portion of the

482 growing season when conditions that were excellent or good downgraded to fair, poor, or very
483 poor condition on average, with CCI decreases of nearly 5% (**Fig. 6i**). When comparing the total
484 crop condition changes (CCI) for all precursor soil moisture conditions and timing, statistically
485 significant differences were noted between near normal and wet precursor conditions in the latter
486 portion of the growing season versus the early and middle portions (Appendix J).

487 **3.5. Yield changes**

488 When working with USDA crop condition data, an essential component to the
489 communication and interpretation of the data is how yields respond to variations in the CCI
490 (Bundy and Gensini, 2022). This is a crucial part of the analysis as not only does further the
491 understanding of yield responses to tropical cyclones, it also confirms the use of the USDA crop
492 condition dataset for in season risk assessment and future analyses. As the CCI increases, yield
493 prospects generally increase as well across most crops and states analyzed in this research (**Fig.**
494 **7**). There is a varying level across all crops and states of how much the CCI can explain
495 variability in yield, and therefore, should be used in practice with caution. Corn tends to have the
496 strongest correlation between CCI and yield as the average coefficient of determination in the
497 Coastal Southeast U.S. region is 0.63, with South and North Carolina possessing the highest
498 coefficients of determination for any state-crop combination at 0.87 and 0.80, respectively (**Fig.**
499 **7a**). The next strongest relationship between crop condition ratings (CCI) and yield is for
500 soybeans across the region as the average coefficient of determination is 0.44. Similar to corn,
501 states along the Atlantic Ocean coast possess the stronger connection between the CCI and
502 soybean yield (Georgia, South Carolina, North Carolina) versus states along the Gulf Coast
503 (Texas, Louisiana, Mississippi, Alabama; **Fig. 7f**). Cotton, peanuts, and sorghum all have similar

504 relationships between CCI and yield with coefficient of determination averages for the region of
 505 0.35, 0.33, and 0.38, respectively (Figs. 7b, 7c, 7e).

506
 507 **Fig. 7.** Annual average Crop Condition Index (CCI) values plotted against annual yield values
 508 for each state paneled by crop in the Coastal Southern U.S. region: a) corn, b) cotton, c) peanuts,
 509 d) rice, e) sorghum, f) soybeans. Regression r^2 and p values are listed next to their respective
 510 states.

511

512 Rice is the lowest in terms of the CCI relationship with yield as the coefficient of determination
 513 average in the region is 0.14. Nonetheless, the CCI can still explain a statistically significant
 514 (95% confidence level) amount of the variability in rice yield. The specific linear model
 515 equations for each regression line in **Fig. 7** can be utilized from Appendix K.

516 Between each crop, yield changes were generally homogeneous (**Fig. 8a**). Statistically,
 517 there were no significant differences between each of the respective crops for after the TC and
 518 for end of year yield to the 95% confidence level (Appendix L). After a TC, modeled yield
 519 changes were marginal as changes ranged between -1–1% on average for each crop.

520
 521 **Fig. 8.** Change in yield percentages one week after a tropical cyclone impacts a cropping area
 522 (darker hue) and the difference between the yield forecast and actual yield (lighter hue) paneled
 523 by cropping type, month, intensity, and soil condition and timing. Each box and whisker present
 524 the same six number summary as described in Fig. 3. (*Color not needed for print*)

525

526 The same holds true for end of season yield as each crop displayed only marginal changes
527 ranging between -1–2% (**Fig. 8a**). When examining end of season yield, variability was much
528 greater compared to modeled yield changes after the week 1 and week 2 average changes due to
529 improvements in conditions or worsening conditions after TC impact (based on the remainder of
530 the growing season's weather conditions).

531 Aggregating all crops together for the yield analysis, the percentage changes were
532 aggregated together rather than the actual yield numbers to avoid production biases. When all
533 crops were aggregated together and examined on a monthly interval, September and October
534 compared to July and August were the only months in which the average change in modeled
535 yield percentages after TC impact were statistically different (**Fig. 8b**; Appendix L). Within
536 September and October, average modeled yield changes between week 1 and week 2 crop
537 conditions resulted in about a 3% decrease in yield. Actual end of year yield changes amounted
538 to a 2% decrease in yield within September and October. When examining yield response by TC
539 intensity, modeled yield changes as well as end of year yield changes tended to increasingly
540 worsen on average as the TC intensity increases (**Fig. 8c**). After tropical depression impact, yield
541 tended to slightly improve for both modeled changes and actual end of year changes (+1–2%).
542 On average, tropical storms did not tend to impact yield in any direction. Once hurricane status
543 was reached, modeled yield changes decreased between 3–6% after TC impact, and end of year
544 yield numbers also decreased 1–3%.

545 When examining yield response to TC impacts based on precursor soil moisture
546 conditions (**Figs. 8d, 8e, 8f**), the trend was generally the same as the crop condition responses.
547 Thus, under wet precursor conditions during the early and latter portion of the growing season

548 resulted in modeled yield changes and to an extent, end of year yield changes to decrease on
 549 average by 1–5%. Under near-normal precursor soil moisture conditions, yield decreased during
 550 the latter portion of the growing season on average after TC impact by 3–4%. Under dry
 551 conditions, TCs tended to improve yield during the early and middle portions of the growing
 552 season while decreasing yield in the latter portion of the growing season by up to 2% on average.

553 From an event by event standpoint, the top five TCs based on the crop condition
 554 changes and yield changes after the TC all had common attributes (**Table 2**). These TCs had a
 555 maximum strength of tropical depression or tropical storm and occurred in August or earlier.

556

557 **Table 2.** Top five most beneficial and detrimental tropical cyclone events based on crop
 558 condition and yield projection response (1986–2021). Crop Condition Index (CCI) Change, Yield
 559 Change, and End of Year Yield Change were averaged across all states and crops examined for
 560 the tropical cyclone. No ranking is established in this table.

Tropical Cyclone Events Beneficial for Crops							
Name	Max Strength	Dates	Crops	States	CCI Change	Yield Change	End of Year Yield Change
Danny 1997	TS	7/21 - 7/24	Cor, Cot, Pea, Soy	AL, FL, NC, SC	4.1%	6.3%	3.5%
Beryl 1988	TD	8/10 - 8/10	Cot, Ric, Sor, Soy	LA	1.8%	7.6%	9.7%
Isaias 2020	TS	8/4 - 8/4	Cor, Cot, Pea, Soy	NC	4.0%	5.3%	-1.6%
Jerry 1995	TD	8/25 - 8/27	Cor, Cot, Soy	GA	4.7%	4.0%	6.6%
Cindy 2005	TD	7/6 - 7/7	Cot, Pea	AL	5.8%	3.5%	-0.8%

Tropical Cyclone Events Detrimental for Crops							
Name	Max Strength	Dates	Crops	States	CCI Change	Yield Change	End of Year Yield Change
Hugo 1989	H4	9/22 - 9/22	Cor, Cot, Soy	NC, SC	-23.1%	-18.6%	-3.9%
Floyd 1999	H1	9/16 - 9/16	Cor, Cot, Pea, Soy	NC	-12.0%	-16.2%	-13.9%
Fran 1996	H3	9/6 - 9/6	Cor, Cot, Pea, Soy	NC	-9.0%	-10.9%	-3.9%
Matthew 2016	H1	10/8 - 10/8	Cot, Pea, Soy	SC	-12.9%	-9.9%	-12.5%
Ivan 2004	H3	9/16 - 9/17	Cot, Pea	AL	-11.3%	-7.4%	0.9%

561

562 In addition, four of the five TCs went over cropland area with precursor PMDI values near-
563 normal or drier than normal. On average, the range of CCI increase for these top events averaged
564 across the study domain and across all crops was a 1.8%–5.8% increase while the modeled yield
565 chances after the TC ranged between an increase of 3.5%–7.6%. Not all the top events resulted
566 in a yield increase by the end of the growing season though, which is due to potential weather
567 impacts after the TC that resulted in a decline in crop conditions and yield. For the TC events
568 that were most detrimental to crops in the Coastal Southern U.S. region, another pattern is
569 established in that the maximum strength of the TC reached hurricane status and occurred in
570 September or later. Precursor soil moisture values were mixed for these events as they ranged
571 from drier than normal to wetter than normal. Category Four Hugo in 1989 resulted in a regional
572 average CCI decrease of 23.1% and yield prospect decrease of 18.6%. Though the largest end of
573 year yield decrease (13.9%) came with Category One Floyd in 1999 that impacted four different
574 crops in North Carolina. Since 1986, four of the five most detrimental TC events to crop
575 conditions and yield across the study region occurred in North and South Carolina.

576

577 **4. DISCUSSION**

578 Within the 36-year (1986–2021) study period, impacts of TCs were both positive and
579 negative for overall crop quality and yield. In response to local topography, soils, land use,
580 access to transportation, and weather patterns, agriculture in the Coastal South U.S. is highly
581 heterogeneous (Knox et al. 2014). This is somewhat in contrast to what was quantified in this
582 study as analysis of variance indicated that there were no statistical differences amongst field
583 crop responses to TCs (Fig. 3; Appendix D). However, this study examined the effects of TCs
584 since 1986 across eight states using state-level data for six field crops, which was previously

585 noted as a limitation to this work. In other words, the publicly available state-level data may not
586 be able to capture the heterogeneities the Coastal Southern U.S. agricultural region possesses,
587 especially since hybrid characteristics can influence the rate of grain drying become more
588 important during unfavorable conditions such as a TC (Troyer and Ambrose, 1971; Cavalieri and
589 Smith, 1985).

590 The latter portion of the growing season is critical for crop quality and yield impacts from
591 TCs as some of the most notable negative changes were observed in September and October
592 (**Figs. 4e, 4f, 6c, 6f, 6i, 8b, 8d, 8e, 8f**). These negative changes in crop conditions and crop yield
593 can be attributed to a few nontrivial factors. The point made about grain drying seems to be an
594 essential one given the overall negative crop quality and yield reactions to TCs in the latter
595 portion of the growing season. Harvest time, which runs from late August through late October
596 for the field crops examined in this study, is a period when dry conditions are more favorable for
597 crop quality. Before harvest, grain crops need to undergo a drydown period to achieve maturity
598 and begin harvest, making this important for maximizing yield (Coulter, 2008; Nielson, 2018).
599 For example, ideal harvest moistures for corn ranges from 15–20%, or higher (Elmore and
600 Abendroth, 2010). Delaying harvest until corn dries increases the risk for frost damage, and
601 fields with poor stalk quality become increasingly susceptible to stalk lodging (Cleugh et al.
602 1998; Lindsey et al. 2021). As a result, harvest efficiency decreases and the potential for
603 significant yield loss increases. The same can be said about other crops in this analysis including
604 cotton, rice, sorghum, and soybeans where a critical drydown period is essential for maturity,
605 harvest, and maximizing yield (Philbrook and Oplinger, 1989; Zhang et al. 1996; Elmore and
606 Roeth, 2013; Kebebe et al., 2015). On the other hand, peanut crops need adequate moisture
607 before harvest so that plants do not get pulled off the vines and then are left in the ground as a

608 result of drier conditions. For cotton, too much moisture from rainfall as seeds inside the bolls
609 get too wet and start sprouting, consequently, reducing the quality and yield (Zuberer and
610 Kenerley, 1993; Landivar and Benedict, 1996; Mailhot et al., 2012). In addition, peak harvest
611 time is concurrent with peak TC frequency in the Coastal Southern U.S.; thus impacting 1) soil
612 moisture in fields making them difficult for machinery to harvest the crop, and 2) as mentioned,
613 the quality of crops that require ample drying time during maturity (Knox et al., 2014; Nielson,
614 2018). This may also explain why TCs did not show any evidence of improving crop conditions
615 even when precursor soil moisture conditions were considered dry during the latter portion of the
616 season (**Fig. 8f**). On the other hand, TCs did act to improve overall crop conditions and crop
617 yield prospects in the early and middle stages of the growing season (**Figs. 4b, 4c, 6d, 6e, 8b, 8e,**
618 **8f**) due to crops requiring adequate soil moisture during the developing and reproductive stages
619 in the phenological cycle. Therefore, TCs do provide some benefits to crops if the timing is
620 correct.

621 Analyzing crop condition response with TC classification, or intensity, also presented
622 results that were to be expected when considering increased wind speeds with higher
623 classifications. That is, the greater the intensity, the higher likelihood of a decrease in optimal
624 crop conditions (**Fig. 5**). As noted, this can be explained in part by the increase in winds with an
625 increase in TC intensity category, as stronger winds create a higher likelihood of greensnap and
626 root lodging. In addition, a statistically significant positive correlation has been found between
627 maximum wind speeds in TCs with average TC-induced rainfall totals (Cerveny and Newman,
628 2000). Though, this correlation is not always clear, and future work may examine the impacts
629 TCs have on agriculture based on rainfall totals. This would require a higher resolution crop
630 condition dataset, such as the recently released gridded crop condition dataset by the USDA

631 NASS which dates to 2015 (Rosales, 2021). The result was a greater decrease in crop condition
632 ratings conducive of optimal yield potential. Excess rainfall at any point in the growing season
633 can cause physical damage to crops by ponding and waterlogging which can lead to root rot, soil
634 erosion and salinity, and sprouting of grains, which ultimately can lead to a reduction in optimal
635 crop condition coverage and potentially a reduction in yield (Li et al., 2019; Bundy and Gensini,
636 2022). In addition, the strongest TCs are favored during the latter portion of the growing season
637 (NHC, 2022). This is important because TCs during the latter portion of the growing season not
638 only can cause greensnap and root lodging, but waterlogging can prevent field work operations
639 during the harvest period.

640 In terms of resilience, agricultural producers and other stakeholders need climate data and
641 information such as the results of this study due to the importance of decision making and
642 adaptation strategies (Changnon, 2007). Furthermore, the interactions among producers and
643 meteorologists plays a critical role in increasing the integration and use of climate knowledge for
644 adaption (Brugger et al., 2016). Such adaptation strategies can be in the form of shifting
645 production systems, investing in crop insurance, or advancing in crop management, technologies,
646 and/or hybrids that are more resilient to the potential detrimental effects TCs have on crop
647 conditions.

648

649 **5. CONCLUSIONS**

650 The Coastal Southern U.S. is uniquely vulnerable to tropical cyclone (TC) impacts during
651 each growing season. Statistically significant differences between crop condition categories
652 revealed that TCs do have a notable impact on agriculture in this region. The overall tendency is
653 for crops in excellent and good condition to be downgraded to fair, poor, and very poor condition

654 after a TC impact. Corn, cotton, peanuts, rice, sorghum, and soybean displayed similar condition
655 changes after TC impact, and thus, were aggregated together since crop type was not a
656 statistically significant predictor of condition changes. TC intensity was the most statistically
657 significant predictor of crop condition changes in the Coastal Southern U.S. Crops were most
658 negatively impacted when 1) crops are in the latter portion of the growing cycle thus requiring
659 drier conditions for maturity and fieldwork operations, 2) the TC reached major hurricane status,
660 and 3) when precursor soil moisture conditions were in any state of surplus in the latter portion
661 of the growing season. Consequently, yield prospects decline after a TC based on the declines in
662 coverage of excellent and good conditioned crops (yield declines of 1–6% on average); though,
663 crop conditions tend to recover resulting in yield prospects to also recover to a marginal extent
664 by the end of the season (declines of up to 3%). Overall, the statistics presented in this study
665 provide a general overview of crop quality and crop yield responses to TCs, which had not been
666 quantified to this point in literature. Quantifying these week-to-week changes in crop condition
667 ratings after TC impact provides risk assessment information for agricultural producers in this
668 region. This may aid in the decision-making process regarding crop management and protection,
669 potentially in the form of insurance, especially during critical periods such as harvest in order to
670 maximize revenue. Under a changing climate, uncertainty in TCs trends further emphasizes the
671 need for resilience and mitigation efforts in order to ensure a more sustainable agricultural
672 system in the important agricultural sector that is the Coastal Southern U.S.

673

674

675

676

677 **ACKNOWLEDGEMENTS**

678 This research was funded by the National Oceanic and Atmospheric Administration under grant
679 number NA22OAR4690645. We also would like to thank the anonymous reviewers for their
680 suggestions as they have greatly enhanced the quality of the manuscript.

681

682 **DATA STATEMENT**

683 All data are publicly available for download and use through the United States Department of
684 Agriculture National Agriculture Statistics Service's Quick Stats website, National Oceanic and
685 Atmospheric Administration's Historical Hurricane Tracks website, and National Weather
686 Service Climate Prediction Center's Drought Monitoring website.

687

688

689

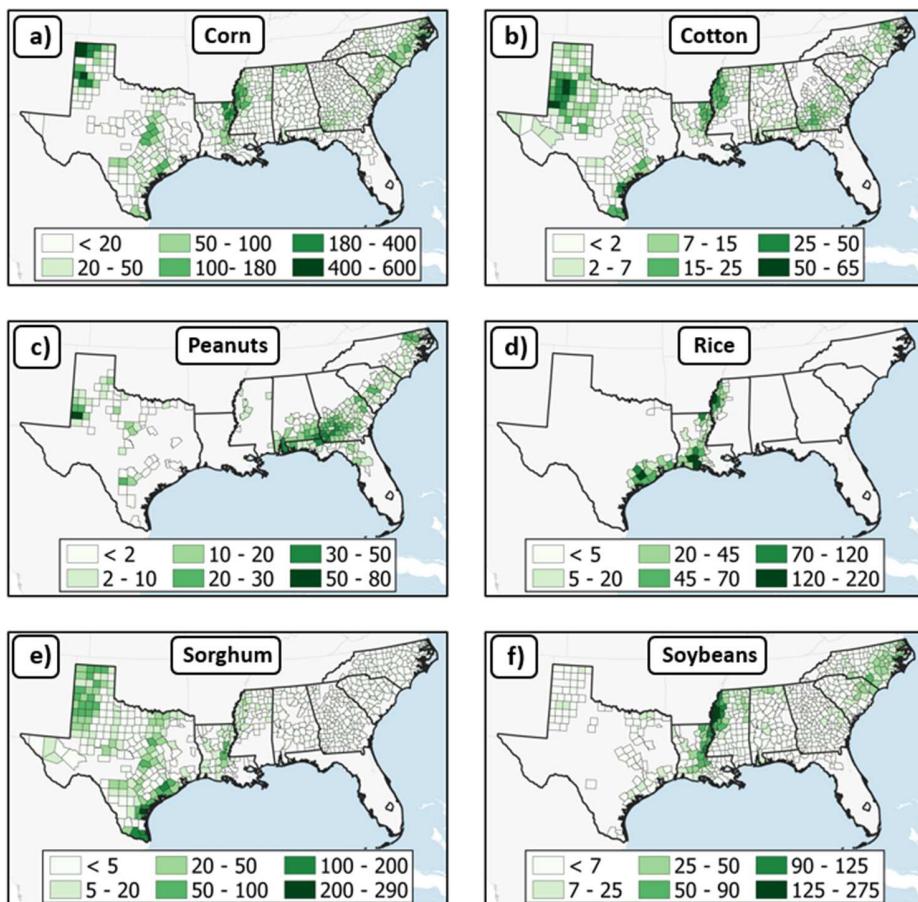
690

691

692

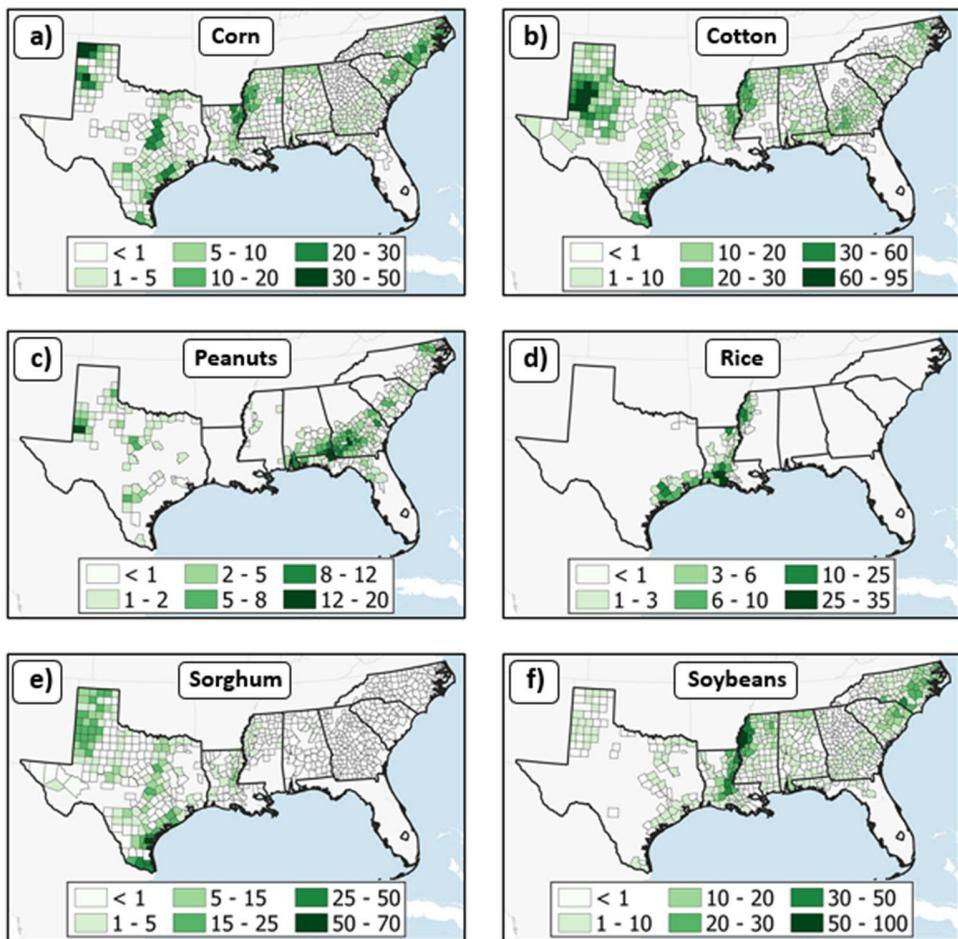
693

694


695

696

697


698

699

701

702 **Appendix A.** Average annual production (kg in millions) at county-level for each crop examined
 703 in the Coastal Southern U.S. region (1986–2021). Locations within the study area without a
 704 county outline did not have any production for the respective crop. (*Color not needed for print*)

705

706 **Appendix B.** Average annual acreage (ha in thousands) at county-level for each crop examined
 707 in the Coastal Southern U.S. region (1986–2021). Locations within the study area without a
 708 county outline did not have any production for the respective crop. (*Color not needed for print*)

709

710

711

712

713

714 **Appendix C.** TukeyHSD multiple comparisons results between each condition combination by
 715 crop for both week 1 and week 2. Table displays the differences between the means along with
 716 the corresponding p values. Bolded text represents statistical significance at 0.05 significance
 717 level.

718

Corn		Cotton		Peanuts		Rice		Sorghum		Soybeans			
	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	
F-E	-0.73	0.818	-0.81	0.95	0.76	0.884	1.28	0.639	-0.15	1	-0.49	0.998	
G-E	-0.75	0.796	-1.64	0.502	-2.56 0.003	-2.28	0.07	-2.21	0.128	-2.31	0.284	-3.70 0.041	
P-E	0.25	0.998	0.74	0.929	0.97	0.731	1.71	0.316	0.31	0.999	0.21	1	
VP-E	-0.09	1	0.37	0.997	1.26	0.456	1.50	0.468	0.56	0.977	-0.41	0.999	
G-F	-0.03	1	-0.83	0.945	-3.33 3E-05	-3.56 3E-04	-2.05	0.187	-1.82	0.556	-4.18 9E-05	-5.78 0.002	
P-F	0.98	0.556	1.55	0.285	0.21	1	0.42	0.996	0.46	0.995	0.70	0.988	
VP-F	0.64	0.886	1.18	0.591	0.50	0.979	0.22	1	0.71	0.935	0.07	1	
P-G	1.00	0.528	2.38 0.025	3.53 7E-06	3.99 3E-05	2.52	0.052	2.52	0.193	4.10 1E-04	4.83 0.017	-0.31	0.997
VP-G	0.66	0.868	2.02	0.093	3.83 7E-07	3.78 1E-04	2.76 0.003	1.90	0.51	4.33 8E-06	3.99	0.084	
VP-P	-0.34	0.993	-0.36	0.985	0.29	0.998	-0.21	1	0.24	1	-0.63	0.993	

719

720

721

722

723

724

725

726

727

728 **Appendix D.** TukeyHSD multiple comparisons results between each crop combination by
 729 condition for both week 1 and week 2. Table displays the differences between the means along
 730 with the corresponding p values. Bolded text represents statistical significance at 0.05
 731 significance level.

732

	Excellent		Good		Fair		Poor		Very Poor		Crop Condition Index	
	Week 1		Week 2		Week 1		Week 2		Week 1		Week 2	
	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val
Cot-Cor	-0.37	0.987	-0.84	0.786	-2.19	0.509	-1.47	0.939	1.11	0.833	1.43	0.856
Pea-Cor	0.10	1	0.20	1	-1.36	0.916	-0.46	1	0.67	0.984	0.70	0.995
Ric-Cor	-0.05	1	-1.95	0.394	-2.80	0.676	-2.44	0.924	2.73	0.356	1.42	0.978
Sor-Cor	-0.40	0.997	-0.70	0.976	0.63	0.999	2.19	0.933	0.05	1	-0.52	1
Soy-Cor	-0.73	0.844	-0.24	0.999	-2.77	0.324	-2.49	0.704	2.19	0.237	2.89	0.265
Pea-Cot	0.47	0.942	1.04	0.482	0.83	0.978	1.01	0.981	-0.44	0.995	-0.73	0.987
Ric-Cot	0.32	0.999	-1.11	0.85	-0.61	0.999	-0.97	0.998	1.62	0.799	-0.01	1
Sor-Cot	-0.03	1	0.14	1	2.82	0.562	3.67	0.508	-1.06	0.956	-1.95	0.844
Soy-Cot	-0.35	0.983	0.60	0.915	-0.58	0.996	-1.01	0.983	1.08	0.79	1.46	0.796
Ric-Pea	-0.15	1	-2.15	0.242	-1.44	0.968	-1.98	0.962	2.06	0.624	0.72	0.999
Sor-Pea	-0.50	0.99	-0.90	0.917	1.99	0.872	2.65	0.834	-0.62	0.997	-1.22	0.981
Soy-Pea	-0.82	0.685	-0.44	0.984	-1.41	0.868	-2.02	0.798	1.52	0.548	2.18	0.49
Sor-Ric	-0.35	0.999	1.25	0.894	3.43	0.63	4.63	0.582	-2.68	0.556	-1.94	0.953
Soy-Ric	-0.68	0.963	1.71	0.51	0.04	1	-0.04	1	-0.54	0.999	1.47	0.971
Soy-Sor	-0.33	0.999	0.46	0.996	-3.40	0.395	-4.68	0.285	2.14	0.564	3.41	0.363

733

734

735

736

737

738

739

740 **Appendix E.** TukeyHSD multiple comparisons results between each condition combination by
 741 month for both week 1 and week 2. Table displays the differences between the means along with
 742 the corresponding p values. Bolded text represents statistical significance at 0.05 significance
 743 level.

744

		May		Jun		Jul		Aug		Sep		Oct		
		Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	
		Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	
F-E		-2.60	0.501	-2.47	0.666	-2.07	0.199	-3.12 0.017	-3.55 1E-06	-4.37 5E-04	0.86	0.371	0.42	0.99
G-E		-0.53	0.999	-4.40	0.091	-0.86	0.93	-0.20	1	-1.60	0.146	-1.05	0.917	
P-E		-0.13	1	-1.13	0.983	-0.53	0.992	-0.83	0.955	-2.02 0.027	-1.79	0.527	-0.18	0.998
VP-E		-0.07	1	-1.33	0.965	-0.53	0.992	-1.44	0.668	-1.65	0.123	-1.68	0.597	
G-F		2.07	0.731	-1.93	0.847	1.20	0.765	2.92 0.032	1.94 0.038	3.32 0.02	-1.90	3E-04	-1.61	0.174
P-F		2.47	0.559	1.33	0.965	1.54	0.526	2.29	0.168	1.53	0.187	2.58	0.137	
VP-F		2.53	0.53	1.13	0.983	1.54	0.526	1.68	0.506	1.90 0.048	2.69	0.107	-0.99	0.221
P-G		0.40	1	3.27	0.359	0.34	0.999	-0.63	0.987	-0.41	0.989	-0.74	0.981	
VP-G		0.47	1	3.07	0.432	0.34	0.999	-1.24	0.794	-0.05	1	-0.63	0.991	
VP-P		0.07	1	-0.20	1	0.00	1	-0.61	0.988	0.36	0.994	0.11	1	

745

746

747

748

749

750

751

752

753

754 **Appendix F.** TukeyHSD multiple comparisons results between each month combination by each
 755 condition for both week 1 and week 2. Table displays the differences between the means along
 756 with the corresponding p values. Bolded text represents statistical significance at 0.05
 757 significance level.

758

		Excellent		Good		Fair		Poor		Very Poor		Crop Condition Index		
		Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	
		Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	
May-Jun	-0.13	1	0.75	0.993	0.20	1	-3.45	0.908	-0.66	0.999	1.40	0.994	0.26	1
May-Jul	-1.09	0.933	0.09	1	0.54	1	-3.26	0.917	-0.96	0.996	1.99	0.965	1.03	0.964
May-Aug	0.77	0.981	1.59	0.784	1.12	0.998	-1.17	0.999	-3.13	0.511	-1.30	0.994	0.53	0.998
Jun-Jul	-0.96	0.743	-0.66	0.957	0.34	1	0.19	1	-0.30	1	0.59	0.999	0.77	0.917
Jun-Aug	0.90	0.692	0.84	0.827	0.92	0.986	2.28	0.79	-2.47	0.151	-2.70	0.331	0.26	0.999
Jul-Aug	1.86	0.011	1.50	0.147	0.58	0.997	2.10	0.772	-2.17	0.166	-3.29	0.067	-0.50	0.963
Sep-May	-1.16	0.897	-3.08	0.119	-4.23	0.518	-3.36	0.892	3.66	0.323	3.41	0.699	1.04	0.955
Sep-Jun	-1.29	0.286	-2.33	0.01	-4.02	0.041	-6.80	0.002	3.00	0.035	4.81	0.004	1.30	0.382
Sep-Jul	-2.25	7E-04	-2.99	2E-05	-3.68	0.033	-6.62	4E-04	2.71	0.033	5.40	1E-04	2.06	0.008
Sep-Aug	-0.39	0.954	-1.49	0.039	-3.10	0.024	-4.52	0.007	0.53	0.978	2.11	0.256	1.56	0.018
Sep-Oct	1.42	0.288	1.82	0.281	0.82	0.994	-1.95	0.951	0.69	0.99	0.26	1	-2.76	0.003
Oct-May	-2.58	0.273	-4.90	0.007	-5.05	0.427	-1.41	0.999	2.98	0.666	3.15	0.858	3.79	0.049
Oct-Jun	-2.71	0.01	-4.15	4E-04	-4.85	0.076	-4.85	0.387	2.31	0.492	4.55	0.161	4.05	7E-05
Oct-Jul	-3.67	2E-05	-4.81	5E-06	-4.51	0.082	-4.67	0.373	2.02	0.575	5.14	0.052	4.82	1E-07
Oct-Aug	-1.81	0.087	-3.31	0.002	-3.93	0.106	-2.57	0.856	-0.15	1	1.85	0.879	4.32	2E-07

759

760

761

762

763

764

765

766

767 **Appendix G.** TukeyHSD multiple comparisons results between each condition combination by
 768 tropical cyclone intensity for both week 1 and week 2. Table displays the differences between the
 769 means along with the corresponding p values. Bolded text represents statistical significance at
 770 0.05 significance level.

771

		TD		TS		H1		H2		H3		H4												
		Week 1	Week 2	Week 1	Week 2	Week 1	Week 2																	
		Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val											
F-E	-0.3	0.992	-1.0	0.544	-0.3	0.981	-0.3	0.992	3.6	0.02	4.6	0.137	4.5	0.111	5.2	0.051	1.2	0.995	0.2	1	6.6	0.804	12.8	0.362
G-E	-0.7	0.703	-0.9	0.691	-0.8	0.484	-1.3	0.253	-4.9	4E-04	-6.3	0.011	-5.7	0.017	-5.4	0.037	-10.5	3E-04	-6.5	0.207	-11.1	0.283	-13.5	0.304
P-E	-0.6	0.886	-1.2	0.423	0.2	0.997	0.2	1	5.1	2E-04	5.9	0.022	3.9	0.233	5.2	0.047	2.3	0.929	6.6	0.201	6.3	0.831	6.7	0.903
VP-E	-0.6	0.808	-1.0	0.544	0.3	0.99	-0.1	1	2.5	0.253	3.4	0.465	3.1	0.519	3.6	0.341	1.5	0.99	3.9	0.745	7.9	0.658	6.3	0.923
G-F	-0.4	0.957	0.1	1	-0.5	0.896	-0.9	0.605	-8.5	0	-10.9	2E-07	-10.3	2E-07	-10.5	2E-07	-11.7	4E-05	-6.8	0.175	-17.6	0.013	-26.2	0.002
P-F	-0.3	0.996	-0.1	1	0.5	0.846	0.5	0.948	1.5	0.792	1.3	0.984	-0.6	0.999	0.1	1	1.0	0.998	6.3	0.236	-0.3	1	-6.1	0.934
VP-F	-0.3	0.985	0.0	1	0.6	0.773	0.2	0.999	-1.2	0.916	-1.2	0.986	-1.5	0.961	-1.5	0.958	0.2	1	3.7	0.792	1.3	1	-6.5	0.915
P-G	0.2	0.999	-0.3	0.999	1.0	0.218	1.5	0.13	10.0	0	12.2	0	9.7	1E-06	10.6	2E-07	12.7	5E-06	13.1	2E-04	17.4	0.016	20.2	0.029
VP-G	0.1	1	-0.1	1	1.0	0.162	1.1	0.376	7.4	0	9.7	6E-06	8.8	2E-05	9.0	2E-05	11.9	2E-05	10.4	0.005	18.9	0.006	19.8	0.034
VP-P	-0.1	1	0.1	1	0.1	1	-0.3	0.994	-2.6	0.199	-2.5	0.759	-0.9	0.996	-1.6	0.951	-0.8	0.999	-2.7	0.937	1.6	1	-0.4	1

772

773

774

775

776

777

778

779

780 **Appendix H.** TukeyHSD multiple comparisons results between each tropical cyclone type by
 781 condition for both week 1 and week 2. Table displays the differences between the means along
 782 with the corresponding p values. Bolded text represents statistical significance at 0.05
 783 significance level.

784

Excellent				Good		Fair		Poor		Very Poor		Crop Condition Index		
Week 1		Week 2		Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2	
	Diff	p-val		Diff	p-val		Diff	p-val		Diff	p-val		Diff	p-val
TD-H1	1.7	0.04	2.7	0.002	5.9	6E-05	8.1	5E-05	-2.2	0.195	-3.0	0.231	-3.9	0
TD-H2	1.1	0.747	2.7	0.047	5.1	0.049	5.7	0.139	-3.3	0.143	-3.8	0.278	-0.8	0.944
TD-H3	-0.6	0.983	1.7	0.603	9.1	7E-05	7.3	0.061	-2.2	0.704	0.4	1	-3.5	0.007
TD-H4	2.4	0.288	3.3	0.126	12.7	3E-06	15.8	2E-05	-4.5	0.149	-10.5	5E-04	-4.5	0.004
TS-H1	1.4	0.152	2.1	0.026	5.5	1E-04	7.1	4E-04	-2.6	0.075	-2.9	0.238	-3.5	4E-07
TS-H2	0.8	0.927	2.1	0.212	4.7	0.078	4.7	0.312	-3.6	0.072	-3.7	0.29	-0.4	0.998
TS-H3	-1.0	0.895	1.1	0.907	8.7	1E-04	6.3	0.146	-2.5	0.548	0.5	1	-3.0	0.026
TS-H4	2.0	0.456	2.7	0.314	12.4	6E-06	14.9	8E-05	-4.8	0.093	-10.4	5E-04	-4.0	0.012
TS-TD	-0.3	0.963	-0.6	0.786	-0.4	0.999	-1.0	0.957	-0.3	0.996	0.1	1	0.4	0.935
H2-H1	0.6	0.987	0.0	1	0.8	0.999	2.4	0.94	1.1	0.979	0.8	0.999	-3.1	0.022
H3-H1	2.4	0.177	1.0	0.953	-3.2	0.671	0.8	1	-0.1	1	-3.4	0.659	-0.5	0.998
H3-H2	1.8	0.652	1.0	0.974	-4.0	0.592	-1.6	0.996	-1.1	0.991	-4.2	0.561	2.6	0.284
H4-H1	-0.7	0.994	-0.6	0.998	-6.8	0.085	-7.7	0.23	2.3	0.857	7.6	0.058	0.5	0.999
H4-H2	-1.3	0.938	-0.6	0.999	-7.6	0.082	-10.2	0.083	1.2	0.994	6.7	0.2	3.6	0.119
H4-H3	-3.0	0.258	-1.6	0.92	-3.6	0.828	-8.5	0.272	2.3	0.911	10.9	0.006	1.0	0.986

785

786

787

788

789

790

791

792 **Appendix I.** TukeyHSD multiple comparisons results between each condition combination by
 793 precursor soil moisture and growing season timing for both week 1 and week 2. Table displays
 794 the differences between the means along with the corresponding p values. Bolded text represents
 795 statistical significance at 0.05 significance level.

796

Wet- early				Wet- mid				Wet- late				
Week 1		Week 2		Week 1		Week 2		Week 1		Week 2		
Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	
F-E	-0.6	0.997	-2.1	0.839	-0.5	0.997	-4.0	0.023	0.7	0.952	6.2	0.033
G-E	-1.1	0.942	-1.8	0.915	-2.7	0.145	-3.1	0.147	-1.3	0.459	-3.2	0.628
P-E	-0.1	1	-1.3	0.974	-0.4	1	-1.4	0.878	1.2	0.574	3.7	0.458
VP-E	1.8	0.694	-0.3	1	-0.6	0.995	-1.8	0.72	1.1	0.67	2.8	0.736
G-F	-0.6	0.997	0.3	1	-2.2	0.359	0.9	0.983	-2.0	0.081	-9.3	1E-04
P-F	0.4	0.999	0.8	0.998	0.2	1	2.6	0.324	0.6	0.974	-2.5	0.836
VP-F	2.3	0.41	1.8	0.915	-0.1	1	2.2	0.511	0.5	0.99	-3.3	0.579
P-G	1.0	0.963	0.4	1	2.4	0.281	1.7	0.765	2.6	0.008	6.9	0.011
VP-G	2.9	0.19	1.4	0.963	2.1	0.396	1.3	0.906	2.5	0.014	6.0	0.041
VP-P	1.9	0.638	1.0	0.993	-0.2	1	-0.4	1	-0.1	1	-0.9	0.998
Dry- early				Dry- mid				Dry- late				
Week 1		Week 2		Week 1		Week 2		Week 1		Week 2		
Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	
F-E	-2.7	0.875	-8.9	0.133	0.6	0.997	-0.5	1	0.7	0.976	2.5	0.507
G-E	2.2	0.938	-0.9	1	0.9	0.983	1.2	0.986	-0.7	0.976	-3.3	0.193
P-E	0.1	1	0.7	1	-0.5	0.999	-1.9	0.913	1.9	0.319	2.6	0.463
VP-E	-0.2	1	-4.8	0.748	-1.4	0.912	-1.6	0.958	0.7	0.97	0.6	0.999
G-F	4.9	0.338	8.0	0.221	0.3	1	1.8	0.936	-1.4	0.666	-5.7	9E-04
P-F	2.8	0.855	9.6	0.088	-1.1	0.96	-1.4	0.977	1.2	0.787	0.1	1
VP-F	2.4	0.91	4.1	0.847	-2.0	0.68	-1.1	0.993	0.0	1	-1.9	0.76
P-G	-2.1	0.95	1.6	0.998	-1.4	0.893	-3.1	0.549	2.6	0.061	5.8	7E-04
VP-G	-2.4	0.91	-3.9	0.875	-2.3	0.531	-2.8	0.658	1.4	0.643	3.8	0.077
VP-P	-0.3	1	-5.4	0.632	-0.9	0.988	0.3	1	-1.2	0.807	-2.0	0.719
Near Normal- early				Near Normal- mid				Near Normal- late				
Week 1		Week 2		Week 1		Week 2		Week 1		Week 2		
Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	Diff	p-val	
F-E	-2.4	0.119	-2.2	0.164	-0.1	1	-0.6	0.958	3.4	0.001	4.5	0.004
G-E	-1.2	0.773	-1.0	0.898	-1.3	0.147	-1.0	0.654	-4.7	6E-07	-4.8	0.002
P-E	-0.6	0.989	-1.1	0.849	-0.8	0.693	-0.6	0.944	2.7	0.017	5.0	9E-04
VP-E	-0.8	0.951	-1.1	0.858	-0.3	0.99	-0.4	0.995	2.0	0.135	3.8	0.025
G-F	1.1	0.834	1.2	0.768	-1.3	0.183	-0.5	0.986	-8.1	0	-9.2	0
P-F	1.8	0.407	1.1	0.83	-0.7	0.753	0.0	1	-0.7	0.961	0.5	0.998
VP-F	1.5	0.568	1.1	0.821	-0.3	0.996	0.2	1	-1.3	0.599	-0.6	0.995
P-G	0.6	0.983	-0.1	1	0.5	0.926	0.4	0.991	7.4	0	9.8	0
VP-G	0.4	0.998	-0.1	1	1.0	0.455	0.7	0.924	6.8	0	8.6	0
VP-P	-0.2	1	0.0	1	0.5	0.959	0.3	0.999	-0.6	0.972	-1.2	0.938

797 **Appendix J.** TukeyHSD multiple comparisons results between each precursor soil moisture and
 798 timing classification combination by condition for both week 1 and week 2. Table displays the
 799 differences between the means along with the corresponding p values. Bolded text represents
 800 statistical significance at 0.05 significance level.

801

Excellent				Good		Fair		Poor		Very Poor		Crop Condition Index												
Week 1		Week 2		Week 1		Week 2		Week 1		Week 2		Week 1		Week 2		Week 1								
	Diff	p-val		Diff	p-val		Diff	p-val		Diff	p-val		Diff	p-val		Diff	p-val							
Dry-Late-Dry-Early	-0.6	1	-3.2	0.558	-3.5	0.973	-5.6	0.901	2.7	0.968	8.1	0.208	1.1	0.999	-1.3	0.999	0.3	1	2.1	0.775	-1.6	0.988	-3.7	0.752
Dry-Mid-Dry-Early	0.0	1	-2.2	0.935	-1.3	1	-0.1	1	3.2	0.939	6.1	0.66	-0.7	1	-4.8	0.384	-1.2	0.996	1.0	0.998	0.4	1	-0.4	1
Dry-Mid-Dry-Late	0.6	0.999	1.0	0.989	2.2	0.976	5.5	0.454	0.5	1	-2.0	0.989	-1.8	0.698	-3.4	0.171	-1.5	0.712	-1.1	0.902	2.0	0.589	3.3	0.322
NN-Early-Dry-Early	0.9	1	-1.7	0.98	-2.6	0.997	-1.8	1	1.2	1	5.0	0.816	0.2	1	-3.5	0.736	0.3	1	2.0	0.812	-0.4	1	-1.4	0.999
NN-Late-Dry-Late	-0.6	0.992	-1.2	0.799	-5.7	2E-02	-2.7	0.881	2.7	0.23	0.8	1	1.7	0.281	1.2	0.947	1.9	0.041	2.0	0.021	-3.1	0.001	-2.6	0.226
NN-Late-NN-Early	-2.1	0.045	-2.8	0.008	-6.7	2E-04	-6.6	0.013	4.2	0.004	3.9	0.16	2.7	0.009	3.3	0.013	2.0	0.046	2.1	0.009	-4.4	6E-07	-4.9	6E-05
NN-Mid-Dry-Mid	0.4	1	0.0	1	-1.8	0.985	-2.3	0.983	-0.2	1	-0.1	1	0.2	1	1.2	0.974	1.5	0.582	1.2	0.756	-1.0	0.981	-1.5	0.953
NN-Mid-NN-Early	-0.5	0.998	-0.5	0.998	-0.6	1	-0.6	1	1.8	0.708	1.1	0.997	-0.7	0.986	-0.1	1	0.0	1	0.2	1	-0.2	1	-0.5	1
NN-Mid-NN-Late	1.6	0.032	2.2	0.003	6.1	1E-06	6.0	8E-04	-2.4	0.084	-2.8	0.2	-3.4	1E-07	-3.4	7E-05	-2.0	1E-03	-2.0	3E-04	4.2	0	4.4	4E-07
Wet-Early-Dry-Early	-0.1	1	-1.7	0.997	-3.4	0.996	-2.6	1	2.0	0.999	5.1	0.949	-0.3	1	-3.7	0.903	1.9	0.98	2.8	0.76	-1.8	0.997	-1.9	0.999
Wet-Early-NN-Early	-1.0	0.999	0.1	1	-0.9	1	-0.8	1	0.8	1	0.1	1	-0.5	1	-0.2	1	1.6	0.962	0.8	1	-1.4	0.996	-0.5	1
Wet-Late-Dry-Late	0.2	1	-1.9	0.521	-0.5	1	-1.8	0.997	0.2	1	1.8	0.99	-0.5	1	-0.8	0.999	0.6	0.997	0.3	1	-0.2	1	-2.6	0.504
Wet-Late-NN-Late	0.8	0.974	-0.7	0.996	5.2	0.024	0.9	1	-2.5	0.437	1.0	1	-2.2	0.122	-2.0	0.618	-1.3	0.524	-1.7	0.188	2.9	0.011	0.0	1
Wet-Late-Wet-Early	-0.3	1	-3.5	0.475	-0.6	1	-4.9	0.959	0.9	1	4.8	0.871	1.0	1	1.5	0.998	-1.0	0.999	-0.4	1	-0.1	1	-4.4	0.568
Wet-Mid-Dry-Mid	0.8	0.997	1.4	0.939	-2.9	0.916	-3.0	0.973	-0.4	1	-2.1	0.986	0.9	0.995	1.9	0.901	1.6	0.738	1.2	0.9	-1.3	0.955	-1.0	0.999
Wet-Mid-NN-Mid	0.3	1	1.4	0.661	-1.1	0.999	-0.7	1	-0.1	1	-2.0	0.916	0.8	0.986	0.6	0.999	0.1	1	0.0	1	-0.4	1	0.5	1
Wet-Mid-Wet-Early	0.8	1	0.8	1	-0.8	1	-0.5	1	0.9	1	-1.1	1	0.6	1	0.7	1	-1.5	0.975	-0.6	1	0.8	1	0.5	1
Wet-Mid-Wet-Late	1.2	0.919	4.3	5E-04	-0.2	1	4.4	0.692	0.0	1	-5.8	0.064	-0.4	1	-0.8	0.999	-0.5	0.999	-0.3	1	0.9	0.992	5.0	0.008

802

803

804

805

806

807

Appendix K. Regression equations from Fig. 7 for each crop and state.

	Corn	Cotton	Peanuts	Rice	Sorghum	Soybeans
Texas	$\text{Yield}_{\text{Est}} = 46.679(X) + 6052$	N/A	$\text{Yield}_{\text{Est}} = 30.166(X) + 2302$	N/A	$\text{Yield}_{\text{Est}} = 31.407(X) + 2040$	$\text{Yield}_{\text{Est}} = 41.017(X) - 241.38$
Louisiana	$\text{Yield}_{\text{Est}} = 77.071(X) + 7223$	$\text{Yield}_{\text{Est}} = 13.794(X) + 263$	$\text{Yield}_{\text{Est}} = 6.4803(X) + 4302$	$\text{Yield}_{\text{Est}} = 36.47(X) + 5476$	$\text{Yield}_{\text{Est}} = 47.884(X) + 3624$	$\text{Yield}_{\text{Est}} = 28.26(X) + 1759$
Mississippi	N/A	$\text{Yield}_{\text{Est}} = 8.2863(X) + 713$	N/A	$\text{Yield}_{\text{Est}} = 17.8(X) + 7115$	$\text{Yield}_{\text{Est}} = 25.825(X) + 4160$	$\text{Yield}_{\text{Est}} = 12.397(X) + 2775$
Alabama	$\text{Yield}_{\text{Est}} = 77.364(X) + 5364$	$\text{Yield}_{\text{Est}} = 7.1162(X) + 566$	$\text{Yield}_{\text{Est}} = 22.794(X) + 2559$	N/A	N/A	$\text{Yield}_{\text{Est}} = 18.875(X) + 1622$
Florida	N/A	N/A	$\text{Yield}_{\text{Est}} = 22.28(X) + 2724$	N/A	N/A	N/A
Georgia	$\text{Yield}_{\text{Est}} = 48.784(X) + 9326$	$\text{Yield}_{\text{Est}} = 8.6785(X) + 516$	$\text{Yield}_{\text{Est}} = 36.135(X) + 2530$	N/A	N/A	$\text{Yield}_{\text{Est}} = 23.428(X) + 1273$
South Carolina	$\text{Yield}_{\text{Est}} = 122.05(X) + 407$	$\text{Yield}_{\text{Est}} = 8.6415(X) + 442$	N/A	N/A	N/A	$\text{Yield}_{\text{Est}} = 17.05(X) + 1137$
North Carolina	$\text{Yield}_{\text{Est}} = 93.772(X) + 2975$	$\text{Yield}_{\text{Est}} = 15.017(X) + 74$	$\text{Yield}_{\text{Est}} = 61.132(X) + 312$	N/A	N/A	$\text{Yield}_{\text{Est}} = 31.743(X) + 459$

824 **Appendix L.** TukeyHSD multiple comparisons results for both yield changes after the tropical
 825 cyclone and yield changes at the end of the growing season by crop, month, intensity, and
 826 precursor soil moisture classification. Table displays the differences between the means along
 827 with the corresponding p values. Bolded text represents statistical significance at 0.05
 828 significance level.

Crop				Month				Intensity				
	TC Impact	End of Year			TC Impact	End of Year			TC Impact	End of Year		
Crop	Diff	p-val	Diff	p-val	Month	Diff	p-val	Diff	p-val	Intensity	Diff	p-val
Cot-Cor	-0.7	0.958	0.1	1	May-Jun	-0.2	1	0.2	1	TD-H1	4.0	3E-05
Pea-Cor	0.0	1	-0.5	0.999	May-Jul	-1.3	0.971	-0.7	1	TD-H2	3.5	0.028
Ric-Cor	1.1	0.977	-0.4	1	May-Aug	-1.4	0.951	-3.2	0.854	TD-H3	2.7	0.296
Sor-Cor	0.4	1	-0.5	1	Jun-Jul	-1.0	0.915	-0.9	0.995	TD-H4	7.6	6E-05
Soy-Cor	0.4	0.998	1.3	0.929	Jun-Aug	-1.1	0.815	-3.4	0.272	TS-TD	-1.3	0.188
Pea-Cot	0.7	0.938	-0.6	0.997	Jul-Aug	-0.1	1	-2.4	0.495	TS-H1	2.7	0.015
Ric-Cot	1.8	0.833	-0.5	1	Sep-May	-1.2	0.97	-0.4	1	TS-H2	2.2	0.386
Sor-Cot	1.0	0.926	-0.6	0.999	Sep-Jun	-1.5	0.581	-0.2	1	TS-H3	1.4	0.887
Soy-Cot	1.0	0.717	1.2	0.929	Sep-Jul	-2.5	0.019	-1.2	0.957	TS-H4	6.3	0.002
Ric-Pea	1.1	0.978	0.1	1	Sep-Aug	-2.6	8E-04	-3.6	0.016	H2-H1	0.5	0.999
Sor-Pea	0.3	1	0.0	1	Sep-Oct	0.4	0.997	-0.2	1	H3-H1	1.2	0.952
Soy-Pea	0.3	0.998	1.8	0.727	Oct-May	-1.7	0.927	-0.2	1	H3-H2	0.8	0.997
Sor-Ric	-0.8	0.997	-0.1	1	Oct-Jun	-1.9	0.572	0.0	1	H4-H1	-3.6	0.287
Soy-Ric	-0.8	0.995	1.7	0.986	Oct-Jul	-2.9	0.072	-1.0	0.996	H4-H2	-4.1	0.262
Soy-Sor	0.0	1	1.8	0.918	Oct-Aug	-3.0	0.024	-3.4	0.348	H4-H3	-4.9	0.144

Wet Soil			Near Normal Soil			Dry Soil						
	TC Impact	End of Year		TC Impact	End of Year		TC Impact	End of Year				
Timing	Diff	p-val	Diff	p-val	Timing	Diff	p-val	Timing	Diff	p-val		
Late-Early	0.4	0.982	4.1	0.434	Late-Early	-1.7	0.189	-1.7	0.474	Late-Early	-3.0	0.27
Mid-Early	2.5	0.549	2.4	0.754	Mid-Early	1.4	0.299	2.5	0.153	Mid-Early	-1.1	0.85
Mid-Late	2.1	0.219	-1.7	0.572	Mid-Late	3.1	9E-05	4.2	3E-04	Mid-Late	1.9	0.29

829

830

831

832

833

REFERENCES

834 Andresen, J. A., Alagarswamy, G., Rotz, C. A., Ritchie, J. T., & LeBaron, A. W. (2001).
835 Weather impacts on maize, soybean, and alfalfa production in the Great Lakes region, 1895–
836 1996. *Agronomy Journal*, 93(5), 1059–1070. <https://doi.org/10.2134/agronj2001.9351059x>

837 Asseng, S. (2013). Agriculture and Climate Change in the Southeast USA. In: Ingram, K.T.,
838 Dow, K., Carter, L., Anderson, J. (eds) Climate of the Southeast United States. NCA
839 Regional Input Reports. Island Press, Washington, DC. <https://doi.org/10.5822/978-1->
840 61091-509-0_7

841 Bain, R., & Fortenberry, T. R. (2013). Impacts of crop conditions reports on national and local
842 wheat markets. In Proceedings of the NCCC-134 Conference on Applied Commodity Price
843 Analysis, Forecasting, and Market Risk Management. St. Louis, MO.
844 <http://www.farmdoc.illinois.edu/nccc134>

845 Bain, R & Fortenberry, T. R. (2016). Impact of crop condition reports on national and local wheat
846 markets. *Journal of Agricultural and Applied Economics*. 49. 1–23.
847 <https://doi.org/10.1017/aae.2016.31>

848 Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M.
849 Held. (2010). Modeled impact of anthropogenic warming on the frequency of intense
850 Atlantic hurricanes. *Science*, 327, 454–458. <https://doi.org/10.1126/science.1180568>

851 Beguería, S., & Maneta, M. P. (2020). Qualitative crop condition survey reveals spatiotemporal
852 production patterns and allows early yield prediction. *Proceedings of the National Academy
853 of Sciences*, 117(31), 18317–18323. <https://doi.org/10.1073/pnas.1917774117>

854 Bell, G. D., E. S. Blake, C. W. Landsea, T. B. Kimberlain, S. B. Goldenberg, J. Schemm, and R.
855 J. Pasch, 2012: [Tropical cyclones] Atlantic basin [in "State of the Climate in

856 2011"]. *Bulletin of the American Meteorological Society*, **93**, S99-S105.

857 <https://doi.org/10.1175/2012BAMSStateoftheClimate.1>

858 Bertinelli, L., Mohan, P., & Strobl, E. (2016). Hurricane damage risk assessment in the

859 Caribbean: An analysis using synthetic hurricane events and nightlight imagery. *Ecological*

860 *Economics*, **124**, 135-144. <https://doi.org/10.1016/j.ecolecon.2016.02.004>

861 Boucher, D. H., Vandermeer, J. H., de la Cerdá, I. G., Mallona, M. A., Perfecto, I., & Zamora, N.

862 (2001). Post-agriculture versus post-hurricane succession in southeastern Nicaraguan rain

863 forest. *Plant Ecology*, **156**(2), 131-137. <https://doi.org/10.1023/A:1012672005360>

864 Brugger, J., A. Meadow, and A. Horangic. (2016). Lessons from first-generation climate science

865 integrators. *Bulletin of the American Meteorological Society*, **97** (3), 355–365.

866 <https://doi.org/10.1175/bams-d-14-00289.1>

867 Bundy, L. R. & V. A. Gensini. (2022). An assessment of USDA corn condition ratings across the

868 U.S. Corn Belt. *Agron. J.*, **114**, 601-617. <https://doi.org/10.1002/agj2.20973>

869 Bundy, L. R., Gensini, V. A., & Russo, M. S. (2022). Insured corn losses in the United States

870 from weather and climate perils. *Journal of Applied Meteorology and Climatology*, **61**(8),

871 969-988. <https://doi.org/10.1175/JAMC-D-21-0245.1>

872 Cavalieri, A. J. and O. S. Smith. (1985). Grain filling and field drying of a set of maize hybrids

873 released from 1930 to 1982. *Crop Science*, **25**, 856-860.

874 <https://doi.org/10.2135/cropsci1985.0011183X002500050031x>

875 Cerveny, R. S., & Newman, L. E. (2000). Climatological relationships between tropical cyclones

876 and rainfall. *Monthly Weather Review*, **128**(9), 3329-3336. [https://doi.org/10.1175/1520-0493\(2000\)128%3C3329:CRBTCA%3E2.0.CO;2](https://doi.org/10.1175/1520-0493(2000)128%3C3329:CRBTCA%3E2.0.CO;2)

878 Changnon, S. A. (2007). The past and future of climate-related services in the United
879 States. *Journal of Service Climatology*, 1(1), 1-7. https://stateclimate.org/pdfs/journal-articles/2007_1-Changnon.pdf

881 Changnon, S. A. (2008). Assessment of flood losses in the United States. *Journal of
882 Contemporary Water Research & Education*, 138(1), 38-44.
<https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1936-704X.2008.00007.x>

884 Chen, C. C., & McCarl, B. (2009). Hurricanes and possible intensity increases: Effects on and
885 reactions from US agriculture. *Journal of Agricultural and Applied Economics*, 41(1), 125-
886 144. <https://doi.org/10.1017/S1074070800002595>

887 Cleugh, H. A., J. M. Miller, and M. Bohm. (1998). Direct mechanical effects of wind on crops.
888 *Agrofor. Sys.*, 41, 85-112. <https://doi.org/10.1023/A:1006067721039>

889 Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
890 Erlbaum. <https://doi.org/10.1111/1467-8721.ep10768783>

891 Coulter, J. (2008). Maturity, frost, and harvest moisture considerations for corn. Minnesota Crop
892 News, Univ of Minnesota Extension. <http://blog-crop-news.extension.umn.edu/2008/09/maturity-frost-and-harvest-moisture.html>

894 Elmore, R. W., & Roeth, F. W. (1999). Corn Kernel Weight and Grain Yield Stability during
895 Post-Maturity Drydown. *Journal of production agriculture*, 12(2), 300-305.
896 <https://doi.org/10.2134/jpa1999.0300>

897 Elmore, R., & Abendroth, L. (2010, September). In-Field Drydown Rates and Harvest. ICM
898 News. Retrieved from <https://crops.extension.iastate.edu/cropnews/2010/09/field-drydown-rates-and-harvest>

900

901 Elsberry, R. L. (2002). PREDICTING HURRICANE LANDFALL PRECIPITATION:
902 Optimistic and Pessimistic Views from the Symposium on Precipitation Extremes. *Bulletin*
903 of the American Meteorological Society

904 83(9), 1333–1339.
904 <http://www.jstor.org/stable/26215397>

905 Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years.
906 *Nature*, 436, 686–688. <https://doi.org/10.1038/nature03906>

907 Emanuel, K. (2007). Environmental factors affecting tropical cyclone power dissipation. *Journal*
908 *of Climate*, 20, 5497-5509. <https://doi.org/10.1175/2007JCLI1571.1>

909 Fackler, P. L. & Norwood, B. (1999). Forecasting Crop Yields and Condition Indices. NCR-134
910 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk
911 Management, (pp. 1-18), Chicago.
912 https://legacy.farmdoc.illinois.edu/nccc134/conf_1999/pdf/confp13-99.pdf

913 Flanders, A., Shepherd, T., and McKissick, J. (2008). Economic impact of agricultural
914 production value losses due to 2008 tropical storm Fay, revised assessment. Center Report
915 CR-08-19, University of Georgia Center for Agribusiness and Economic Development.
916 <http://www.caes.uga.edu/center/caed/pubs/2008/documents/CR-08-19.pdf>

917 Haddad, S., Tabatabai, M., and Loynachan, T. (2013). Biochemical processes controlling soil
918 nitrogen mineralization under waterlogged conditions. *Soil Science Society of America*
919 Journal, 77, 809–816. <https://doi.org/10.2136/sssaj2012.0231>

920 Hatch, U., Jagtap, S., Jones, J., & Lamb, M. (1999). Potential effects of climate change on
921 agricultural water use in the Southeast U.S., *JAWRA Journal of the American Water*
922 *Resources Association*, 35(6), 1551-1561. <https://doi.org/10.1111/j.1752-1688.1999.tb04237.x>

924 Hossain, M. Z., Islam, M. T., Sakai, T., & Ishida, M. (2008). Impact of tropical cyclones on rural
925 infrastructures in Bangladesh. *Agricultural Engineering International: CIGR Journal*.
926 10(2):1–13. <https://cigrjournal.org/index.php/Ejournal/article/view/1036>

927 Irwin, S. and D. Good. (2017a). "When Should We Start Paying Attention to Crop Condition
928 Ratings for Corn and Soybeans?" *farmdoc daily* (7):96, Department of Agricultural and
929 Consumer Economics, University of Illinois at Urbana-Champaign, May 24, 2017.
930 [https://farmdocdaily.illinois.edu/2017/05/when-start-paying-attention-crop-condition-](https://farmdocdaily.illinois.edu/2017/05/when-start-paying-attention-crop-condition-ratings.html)
931 [ratings.html](https://farmdocdaily.illinois.edu/2017/05/when-start-paying-attention-crop-condition-ratings.html)

932 Irwin, S., & Good, D. (2017b). How should we use within-season crop condition ratings for corn
933 and soybeans? *Farmdoc daily*, 7, 96. Department of Agricultural and Consumer Economics,
934 University of Illinois at Urbana-Champaign. [https://farmdocdaily.illinois.edu/2017/06/how-](https://farmdocdaily.illinois.edu/2017/06/how-to-use-within-season-crop-condition-ratings.html)
935 [to-use-within-season-crop-condition-ratings.html](https://farmdocdaily.illinois.edu/2017/06/how-to-use-within-season-crop-condition-ratings.html)

936 Irwin, S., & Hubbs, T. (2018). Measuring the accuracy of forecasting corn and soybean yield
937 with good and excellent crop condition ratings. *farmdoc daily*, 8, 118.
938 [https://farmdocdaily.illinois.edu/2018/06/measuring-the-accuracy-of-forecasting-corn-and-](https://farmdocdaily.illinois.edu/2018/06/measuring-the-accuracy-of-forecasting-corn-and-soybean-yield.html)
939 [soybean-yield.html](https://farmdocdaily.illinois.edu/2018/06/measuring-the-accuracy-of-forecasting-corn-and-soybean-yield.html)

940 Jorgensen, N. (2014). A Comparison of Corn Yield Forecasting Models. Masters Thesis, South
941 Dakota State University, Department of Economics. <https://openprairie.sdstate.edu/etd/339>

942 Jorgensen, N. & Diersen, M., "Forecasting Corn and Soybean Yields with Crop Conditions"
943 (2014). *Economics Commentator*. Paper 538. http://openprairie.sdstate.edu/econ_comm/538

944 Kebebe, A. Z., Reid, L. M., Zhu, X., Wu, J., Woldemariam, T., Voloaca, C., & Xiang, K. (2015).
945 Relationship between kernel drydown rate and resistance to Gibberella ear rot in
946 maize. *Euphytica*, 201, 79–88. <https://doi.org/10.1007/s10681-014-1185-2>

947 Khaki, S., Pham, H., & Wang, L. (2021). Simultaneous corn and soybean yield prediction from
948 remote sensing data using deep transfer learning. *Scientific Reports*, 11(1), 1-14.
949 <https://doi.org/10.1038/s41598-021-89779-z>

950 Knight, D. B., & Davis, R. E. (2007). Climatology of tropical cyclone rainfall in the southeastern
951 United States. *Physical Geography*, 28(2), 126-147. <https://doi.org/10.2747/0272->
952 3646.28.2.126

953 Knox, P., Fuhrmann, C., & Konrad, C. (2014). Challenges and opportunities for Southeast
954 agriculture in a changing climate: Perspectives from state climatologists. *Southeastern*
955 *Geographer*, 54(2), 118-136. <https://www.jstor.org/stable/26233683>

956 Knutson, T. R., J. L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, J. P.
957 Kossin, A. K. Srivastava, and M. Sugi. (2010). Tropical cyclones and climate
958 change. *Nature Geoscience*, 3, 157-163. <https://doi.org/10.1038/ngeo779>

959 Knutson, T. R., J. J. Sirutis, G. A. Vecchi, S. Garner, M. Zhao, H. - S. Kim, M. Bender, R. E.
960 Tuleya, I. M. Held, and G. Villarini. (2013). Dynamical downscaling projections of twenty-
961 first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. *Journal*
962 *of Climate*, 27, 6591-6617. <https://doi.org/10.1175/jcli-d-12-00539.1>

963 Kopyra, M., & Gwo d, E. A. (2004). The role of nitric oxide in plant growth regulation and
964 responses to abiotic stresses. *Acta Physiologiae Plantarum*, 26, 459–473.
965 <https://doi.org/10.1007/s11738-004-0037-4>

966 Kossin, J. P., S. J. Camargo, and M. Sitkowski. (2010). Climate modulation of North Atlantic
967 hurricane tracks. *Journal of Climate*, 23, 3057-3076, <https://doi.org/10.1175/2010jcli3497.1>

968 Kaur, G., Singh, G., Motavalli, P. P., Nelson, K. A., Orlowski, J. M., Golden, B.R. (2020).

969 Impacts and management strategies for crop production in Waterlogged/Flooded soils: A
970 review. *Agronomy Journal*. 112:1475–1501. <https://doi.org/10.1002/agj2.20093>

971 Kunze, S. (2021). Unraveling the effects of tropical cyclones on economic sectors worldwide:
972 Direct and indirect impacts. *Environmental and Resource Economics*, 78(4), 545-569.
973 <https://doi.org/10.1007/s10640-021-00541-5>

974 Landivar, J. A., and J. H. Benedict. 1996. *Monitoring System for the Management of Cotton
975 Growth and Fruiting*. College Station, TX: Texas Agricultural Experiment Station Bulletin
976 B02.

977 Landsea, C. W., Franklin, J. L., McAdie, C. J., Beven, J. L., Gross, J. M., Jarvinen, B. R., &
978 Dodge, P. P. (2004). A reanalysis of Hurricane Andrew's intensity. *Bulletin of the American
979 Meteorological Society*, 85(11), 1699-1712. <https://doi.org/10.1175/BAMS-85-11-1699>

980 Landsea, C. W., Harper, B. A., Hoarau, K., & Knaff, J. A. (2006). Can we detect trends in
981 extreme tropical cyclones? *Science*, 313(5786), 452-454.
982 <https://doi.org/10.1126/science.1128448>

983 Landsea, C. W., and J. L. Franklin. (2013). Atlantic hurricane database uncertainty and
984 presentation of a new database format. *Monthly Weather Review*, 141, 3576-3592.
985 <https://doi.org/10.1175/MWR-D-12-00254.1>

986 Lehecka, G. V. (2014). The value of USDA Crop Progress and condition information: Reactions
987 of corn and soybean futures markets. *Journal of Agricultural and Resource Economics.*,
988 39(1), 88–105. <https://www.jstor.org/stable/44131316>

989 Li, Y., Guan, K., Schnitkey, G. D., Delucia, E., & Peng, B. (2019). Excessive rainfall leads to
990 maize yield loss of a comparable magnitude to extreme drought in the United States. *Global
991 Change Biology*, 25(7), 2325–2337. <https://doi.org/10.1111/gcb.14628>

992 Lindsey, A. J., Geyer, A. B., Minyo, R., & Thomison, P. R. (2021). Seeding rate impact on root
993 lodging and greensnap in corn. *Crop, Forage & Turfgrass Management*, e20112.
994 <https://doi.org/10.1002/cft2.20112>

995 Lubchenco, J., & Furgione, L. (2012). Service Assessment: Hurricane Irene, August 21-30,
996 2011. NOAA/NWS.

997 Mailhot, D. J. G, P. Srivastava, J. J. Marois, E. A. Osekre, and D. L. Wright. 2012. "Effect of
998 Weather Conditions on Severity of Hardlock in Cotton." *Current Microbiology* 61(2):
999 181–189.

1000 Mendelsohn, R., Emanuel, K., Chonabayashi, S., & Bakkensen, L. (2012). The impact of climate
1001 change on global TC damage. *Nature Climate Change*, 2(3), 205-209.
1002 <https://doi.org/10.1038/nclimate1357>

1003 NCEI. (2021). *Historical Palmer drought indices*. Historical Palmer Drought Indices | National
1004 Centers for Environmental Information (NCEI). Retrieved from
1005 <https://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers/overview>

1006 NHC. (2022). *Tropical Cyclone Climatology*. National Oceanic and Atmospheric
1007 Administration. Retrieved November 2022, from <https://www.nhc.noaa.gov/climo/>

1008 Nielson, R. L. (2018). *Field drydown of mature corn grain*. Field Drydown of Mature Corn
1009 Grain (Purdue University). Retrieved December 2021, from
1010 <https://www.agry.purdue.edu/ext/corn/news/timeless/GrainDrying.html>

1011 NOAA. (2019). *Hurricane Michael upgraded to a category 5 at time of U.S. landfall*. National
1012 Oceanic and Atmospheric Administration. Retrieved November 2022, from
1013 <https://www.noaa.gov/media-release/hurricane-michael-upgraded-to-category-5-at-time-of-us-landfall>
1014

1015 [dataset] NOAA. (2021). Historical Hurricane Tracks. Retrieved from
1016 <https://coast.noaa.gov/hurricanes/#map=4/32/-80>

1017 NOAA. (2022). *Did you know? U.S. Climate Divisions*. Retrieved September 2022, from
1018 [https://www.ncei.noaa.gov/access/monitoring/dyk/us-climate-
1019 divisions#:~:text=There%20are%20344%20climate%20divisions%20in%20the%20CONUS
1020 ..,to%20compute%20regional%20values%20%28Karl%20and%20Koss%2C%201984%29](https://www.ncei.noaa.gov/access/monitoring/dyk/us-climate-divisions#:~:text=There%20are%20344%20climate%20divisions%20in%20the%20CONUS,.to%20compute%20regional%20values%20%28Karl%20and%20Koss%2C%201984%29)

1021 Nogueira, R. C., & Keim, B. D. (2011). Contributions of Atlantic tropical cyclones to monthly
1022 and seasonal rainfall in the eastern United States 1960–2007. *Theoretical and Applied
1023 Climatology*, 103(1), 213-227. <https://doi.org/10.1007/s00704-010-0292-9>

1024 [dataset] NWS. (2011, September 12). College Park, Maryland. Retrieved September 2022, from
1025 https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/palmer_drought/

1026 Ott, R. L., & Longnecker, M. T. (2015). *An Introduction to Statistical Methods and Data
1027 Analysis*. Cengage Learning.

1028 Palmer, W. C. (1965). *Meteorological drought* (Vol. 30). US Department of Commerce, Weather
1029 Bureau.

1030 Peduzzi, P. B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O.
1031 Nordbeck. (2012). Global trends in TC risk. *Nature Climate Change*, 2, 289-294.
1032 <https://doi.org/10.1038/nclimate1410>

1033 Perotto-Baldiviezo, H. L., Thurow, T. L., Smith, C. T., Fisher, R. F., & Wu, X. B. (2004). GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, southern
1034 Honduras. *Agriculture, Ecosystems & Environment*, 103(1), 165-176.
1035
1036 <https://doi.org/10.1016/j.agee.2003.10.011>

1037 Philbrook, B. D., & Oplinger, E. S. (1989). Soybean field losses as influenced by harvest
1038 delays. *Agronomy Journal*, 81(2), 251-258.
1039 <https://doi.org/10.2134/agronj1989.00021962008100020023x>

1040 Philpott, S. M., Lin, B. B., Jha, S., & Brines, S. J. (2008). A multi-scale assessment of hurricane
1041 impacts on agricultural landscapes based on land use and topographic features. *Agriculture,
1042 Ecosystems & Environment*, 128(1-2), 12-20. <https://doi.org/10.1016/j.agee.2008.04.016>

1043 Pielke Jr, R. A., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., & Musulin, R. (2008).
1044 Normalized hurricane damage in the United States: 1900–2005. *Natural Hazards
1045 Review*, 9(1), 29-42. [https://doi.org/10.1061/\(ASCE\)1527-6988\(2008\)9:1\(29\)](https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(29))

1046 Pengthamkeerati, P., Motavalli, P. P., Kremer, R. J., & Anderson, S. H. (2006). Soil compaction
1047 and poultry litter effects on factors affecting nitrogen availability in a claypan soil. *Soil and
1048 Tillage Research*, 91, 109–119. <https://doi.org/10.1016/j.still.2005.11.008>

1049 Rappaport, E. N. (2000). Loss of life in the United States associated with recent Atlantic
1050 TCs. *Bulletin of the American Meteorological Society*, 81(9), 2065-2074.
1051 [https://doi.org/10.1175/1520-0477\(2000\)081%3C2065:LOLITU%3E2.3.CO;2](https://doi.org/10.1175/1520-0477(2000)081%3C2065:LOLITU%3E2.3.CO;2)

1052 Rodgers, E. B., Adler, R. F., & Pierce, H. F. (2001). Contribution of TCs to the North Atlantic
1053 climatological rainfall as observed from satellites. *Journal of Applied Meteorology*, 40(11),
1054 1785-1800. [https://doi.org/10.1175/1520-0450\(2001\)040%3C1785:COTCTT%3E2.0.CO;2](https://doi.org/10.1175/1520-0450(2001)040%3C1785:COTCTT%3E2.0.CO;2)

1055 Rosales, A. (2021). *Crop Progress and Condition Layers*.
1056 https://www.nass.usda.gov/Research_and_Science/Crop_Progress_Gridded_Layers/CropPro
1057 gressandConditionLayersDescription.pdf

1058 Schnepf, R. D., Chite, R. M., & Resources, Science, and Industry Division. (2005). US
1059 agriculture after Hurricane Katrina: Status and issues. Congressional Information Service,
1060 Library of Congress. Retrieved from <https://digital.library.unt.edu/ark:/67531/metacrs7808/>

1061 Seneviratne, S. I., N. Nicholls, D. Easterling, C. M. Goodess, S. Kanae, J. Kossin, Y. Luo, J.
1062 Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang.
1063 (2012). Ch. 3: Changes in climate extremes and their impacts on the natural physical
1064 environment. *Managing the Risks of Extreme Events and Disasters to Advance Climate
1065 Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental
1066 Panel on Climate Change (IPCC)*, C.B. Field, Barros, V., Stocker, T.F., Dahe, Q., Dokken,
1067 D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Tignor, M., and
1068 Midgley, P.M., Eds., Cambridge University Press, 109-230. <https://doi.org/10.7916/d8-6nbt-s431>

1069

1070 Shepherd, J. M., & Knutson, T. (2007). The current debate on the linkage between global
1071 warming and hurricanes. *Geography Compass*, 1(1), 1-24. <https://doi.org/10.1111/j.1749-8198.2006.00002.x>

1072

1073 Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track
1074 information. *Weather and Forecasting*, 27, 715-729. <https://doi.org/10.1175/waf-d-11-00085.1>

1075

1076 Troyer, A. F., & Ambrose, W. B. (1971). Plant characteristics affecting field drying rate of ear
1077 corn. *Crop Science*, 11(4), 529-531.

1078 <https://doi.org/10.2135/cropsci1971.0011183X001100040019x>

1079 USDA. (2016). National Agricultural Statistics Service: Crop Progress/Crop Weather Terms and
1080 Definitions. Retrieved from
1081 https://www.nass.usda.gov/Publications/National_Crop_Progress/terms_definitions.php#con
1082 dition

1083 USDA. (2020). Hurricane Insurance Protection-Wind Index Handbook. Risk Management
1084 Agency. Retrieved from <https://www.rma.usda.gov/-/media/RMA/Handbooks/Underwriting---24000/Hurricane-Insurance-Protection---Wind-Index/2020-24360-Hurricane-Insurance-Protection---Wind-Index-Handbook.ashx?la=en>

1085

1086

1087 USDA. (2021). Crop Progress. Retrieved from
1088 https://www.nass.usda.gov/Publications/Todays_Reports/reports/prog2721.pdf

1089 [dataset] USDA. (2022). National Agricultural Statistics Service: Quick Stats. Retrieved from
1090 https://www.nass.usda.gov/Quick_Stats/

1091 Villarini, G., G. A. Vecchi, and J. A. Smith. (2012). U.S. landfalling and North Atlantic
1092 hurricanes: Statistical modeling of their frequencies and ratios. *Monthly Weather
1093 Review*, 140, 44-65. <https://doi.org/10.1175/mwr-d-11-00063.1>

1094 Villarini, G., Goska, R., Smith, J. A., & Vecchi, G. A. (2014). North Atlantic tropical cyclones
1095 and US flooding. *Bulletin of the American Meteorological Society*, 95(9), 1381-1388.
1096 <https://doi.org/10.1175/BAMS-D-13-00060.1>

1097 Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. R. (2005). Changes in tropical cyclones
1098 number, duration, and intensity in a warming environment. *Science*, 309(5742), 1844-1846.
1099 <https://doi.org/10.1126/science.1116448>

1100 Weinkle, J., R. Maue, and R. Pielke, Jr. (2012). Historical global tropical cyclone
1101 landfalls. *Journal of Climate*, 25, 4729-4735. <https://doi.org/10.1175/jcli-d-11-00719.1>

1102 Xu, M., Yang, Q., & Ying, M. (2005). Impacts of tropical cyclones on Chinese lowland
1103 agriculture and coastal fisheries. In *Natural Disasters and Extreme Events in*
1104 *Agriculture* (pp. 137-144). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28307-2_8

1105 Zandbergen, P. A. (2009). Exposure of US counties to Atlantic tropical storms and hurricanes,
1106 1851–2003. *Natural Hazards*, 48(1), 83-99. <https://doi.org/10.1007/s11069-008-9250-6>

1107 Zhang, Y., Kang, M. S., & Magari, R. (1996). A diallel analysis of ear moisture loss rate in
1108 maize. *Crop science*, 36(5), 1140-1144.
1109 <https://doi.org/10.2135/cropsci1996.0011183X003600050012x>

1110 Zuberer, D. A., & Kenerley, C. M. (1993). Seasonal dynamics of bacterial colonization of cotton
1111 fiber and effects of moisture on growth of bacteria within the cotton boll. *Applied and*
1112 *environmental microbiology*, 59(4), 974-980. <https://doi.org/10.1128/aem.59.4.974-980.1993>

1113

1114